

XXVII ВСЕРОССИЙСКИЙ АСПИРАНТСКО-МАГИСТЕРСКИЙ НАУЧНЫЙ СЕМИНАР,

ПОСВЯЩЕННЫЙ ДНЮ ЭНЕРГЕТИКА И 55-ЛЕТИЮ КАЗАНСКОГО ГОСУДАРСТВЕННОГО ЭНЕРГЕТИЧЕСКОГО УНИВЕРСИТЕТА

КАЗАНЬ, 5-6 ДЕКАБРЯ 2023 Г.

МАТЕРИАЛЫ ДОКЛАДОВ

B TPEX TOMAX

TOM 2

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский государственный энергетический университет»

XXVII ВСЕРОССИЙСКИЙ АСПИРАНТСКО-МАГИСТЕРСКИЙ НАУЧНЫЙ СЕМИНАР, ПОСВЯЩЕННЫЙ ДНЮ ЭНЕРГЕТИКА И 55-ЛЕТИЮ КГЭУ

5-6 декабря 2023 г.

Казань

В трех томах

Под общей редакцией ректора КГЭУ Э.Ю. Абдуллазянова

Том 2

Казань 2023

УДК 621.1+621.3+621.04+681.5+574 ББК 31+32.96+28.08 М34

Рецензенты:

доцент СГТУ имени Гагарина Ю.А, кандидат физико-математических наук, доцент Е.К. Пыльская;

проректор по РиИ ФГБОУ ВО «КГЭУ», доктор технических наук, доцент И.Г. Ахметова

Редакционная коллегия:

Э.Ю. Абдуллазянов (гл. редактор); И.Г. Ахметова (зам. гл. редактора), Д.А. Ганеева

М34 **Материалы** докладов XXVII Всероссийского аспирантскомагистерского научного семинара, посвященного дню энергетика и 55-летию КГЭУ / Под общ. ред. ректора КГЭУ Э.Ю. Абдуллазянова. В 3 т.; Т. 2. – Казань: Казан. гос. энерг. ун-т, 2023. – 511 с.

ISBN 978-5-89873-652-1 (T. 2) ISBN 978-5-89873-654-5

В сборнике представлены материалы докладов XXVII Всероссийского аспирантско-магистерского научного семинара, посвященного дню энергетика и 55-летию КГЭУ, в которых изложены результаты научно-исследовательской работы молодых ученых, аспирантов и студентов по проблемам в области теплоэлектроэнергетики, ресурсосберегающих технологий В энергомашиностроения, инженерной экологии, электромеханики электропривода, фундаментальной физики, современной электроники и компьютерных информационных технологий, экономики, социологии, истории и философии.

Предназначены для научных работников, аспирантов и специалистов, работающих в сфере энергетики, а также для студентов вузов энергетического профиля.

Материалы докладов публикуются в авторской редакции. Ответственность за содержание тезисов возлагается на авторов.

УДК 621.1+621.3+621.04+681.5+574 ББК 31+32.96+28.08

ISBN 978-5-89873-652-1 (T. 2) ISBN 978-5-89873-654-5 © КГЭУ, 2023

камерах // Проблемы и перспективы развития россии: молодежный взгляд в будущее. сборник научных статей 4-й Всероссийской научной конференции. - Курск: Юго-Западный государственный университет , 2021. - С. 263-267.

- 2. Umberto Berardi, Roya Hamideh Nosrati Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions // Energy. 2018. №147. C. 1188-1202.
- 3. Jelle BP Accelerated climate ageing of building materials, components and structures in the laboratory // Journal of Materials Science. 2012. №47. C. 6475–6496.
- 4. Никонова А.С., Иваней А.А., Похольченко В.А. Разработка конструктивно-технологических параметров климатической камеры инновационного типа // Наука и образование 2018. Мурманск: Мурманский государственный технический университет, 2019. С. 267-270.
- 5. Киселев, И. Я. Уравнения изотерм сорбции паров воды материалами ограждающих конструкций зданий / И. Я. Киселев // Известия высших учебных заведений. Технология текстильной промышленности. 2019. № 3(381). С. 203-207. EDN FDOJPD.

УДК 620.9

РАСЧЕТ ЭКВИВАЛЕНТНОЙ ДЛИТЕЛЬНОСТИ СТАРЕНИЯ ТЕПЛОИЗОЛЯЦИОННЫХ МАТЕРИАЛОВ ДЛЯ КЛИМАТИЧЕСКИХ УСЛОВИЙ ГОРОДА КАЗАНИ

Камиля Расуловна Гафиатуллина¹, Максим Дмитриевич Крайков², Александр Валерьевич Федюхин³ Науч. рук. д-р техн. наук, проф. Юрий Витальевич Ваньков ^{1,2}ФГБОУ ВО «КГЭУ», г. Казань, Республика Татарстан ³НИУ «МЭИ», г. Москва

¹Kgafiatullina@yandex.ru, ²maksim_kraikov@mail.ru, ³fedyukhinav@yandex.ru

Аннотация. В статье приведен расчет эквивалентной длительности старения для проведения испытаний в везерометре.

Ключевые слова: везерометр, уравнение Аррениуса, модель Пека.

CALCULATION OF THE EQUIVALENT DURATION OF AGING OF THERMAL INSULATION MATERIALS FOR THE CLIMATIC CONDITIONS OF THE CITY OF KAZAN

Kamilya R. Gafiatullina¹, Maxim D. Krakov²,
Alexander V. Fedyukhin³

1,2 KSPEU, Kazan, Republic of Tatarstan

3 MPEI, Moscow

¹Kgafiatullina@yandex.ru, ²maksim_kraikov@mail.ru, ³fedyukhinav@yandex.ru

Abstract. The article provides a calculation of the equivalent duration of aging for testing in a weatherometer.

Keywords: weatherometer, Arrhenius equation, Peck model.

Для эффективной оценки последствий старения теплоизоляционные материалы следует подвергать длительному воздействию естественного климата. В качестве альтернативы могут быть проведены ускоренные лабораторные испытания, при которых материал подвергается воздействию условий для ускорения нормальных процессов старения [1].

Наиболее критичными климатическими нагрузками, которые оказывают влияние на старение материалов, являются: УФ-излучение, экстремальные температуры, изменения температуры, повышенная влажность, физические нагрузки, ветер, микроорганизмы [2].

Для прогнозирования долгосрочных характеристик теплоизоляции используют везерометры, предназначенные для испытаний на воздействие УФ-излучения, температуры и влажности на исследуемый объект [3].

Для оценки коэффициента ускорения старения используются уравнение Аррениуса, модель Пека и простая пропорция между общей УФ-энергией во время старения и естественным процессом старения на открытом воздухе (1) [4].

$$AF_{UV+t/RH} = \frac{1}{3}(AF_{T1} \cdot AF_H) + \frac{2}{3}(AF_{T2} \cdot AF_{UV}); \tag{1}$$

Для определения эквивалентной длительности старения в ксеноновой камере был проведен расчет коэффициента ускорения старения для климатических условий г. Казани.

Для оценки коэффициента ускорения по температуре учитывались температура испытаний 70 °C и температура условий эксплуатации 15 °C.

Относительная влажность в камере принималась 100%, в естественных климатических условиях 40%. Усредненное значение солнечной радиации $114,41 \, \mathrm{Bt/m}^2$.

Коэффициент температурного ускорения в течение 4-часового испытательного цикла, когда наблюдались только высокие температура и влажность, рассчитывается по формуле (2).

$$AF_{T1} = e^{-\frac{E_A}{K} \cdot (\frac{1}{T_A} - \frac{1}{T_U})} = e^{-\frac{70000}{8,314} \cdot (\frac{1}{65} - \frac{1}{15})} = 75,54;$$
 (2)

Коэффициент температурного ускорения в течение 8-часового испытательного цикла, когда действовали только температура и УФ-излучение, рассчитывается по формуле (3).

$$AF_{T2} = e^{-\frac{E_A}{K} \cdot (\frac{1}{T_A} - \frac{1}{T_U})} = e^{-\frac{70000}{8,314} \cdot (\frac{1}{55} - \frac{1}{15})} = 35,35;$$
 (3)

Коэффициент ускорения влажности рассчитывается по формуле [5] (4).

(4)

Коэффициент ускорения УФ-излучения по формуле (5).

$$AF_{UV} = \frac{\Phi_A}{\Phi_U} = \frac{1200}{114,41} = 10,49; \tag{5}$$

На основании расчетов эксплуатация длительностью 5 лет в условиях климата г. Казани будет воспроизведена в везерометре за 57,3 часа, что составит 2,4 суток или 5 циклов по 12 часов.

Работа выполнена в рамках Гос. Задания № 075-03-2023-291/1.

Источники

1. Павлов Е.В., Леснякова М.Е., Шин Л.Зо. Анализ видов и процедур испытаний, проводимых в температурных и климатических камерах // Проблемы и перспективы развития россии: молодежный взгляд в будущее. сборник научных статей 4-й Всероссийской научной

конференции. - Курск: Юго-Западный государственный университет, 2021. - С. 263-267.

- 2. Бурков, Д. В. Защита трубопроводов от коррозии под тепловой изоляцией / Д. В. Бурков, М. Г. Губайдуллин // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. -2023. -№ 3(143). C. 94-102. DOI 10.17122/ntj-oil-2023-3-94-102. EDN NQLPJM.
- 3. Лукашевич, В. Н. Исследование изменений состояния и свойств волокон дисперсной арматуры в процессе строительства и эксплуатации асфальтобетонных покрытий / В. Н. Лукашевич, О. Д. Лукашевич // Вестник Томского государственного архитектурностроительного университета. 2023. Т. 25, № 3. С. 185-196. DOI 10.31675/1607-1859-2023-25-3-185-196. EDN TQJNLC.
- 4. Umberto Berardi, Roya Hamideh Nosrati Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions // Energy. 2018. №147. C. 1188-1202.
- 5. Jelle BP Accelerated climate ageing of building materials, components and structures in the laboratory // Journal of Materials Science. − 2012. №47. C. 6475–6496.

УДК 621.643.8

МОДЕЛЬ ТРУБОПРОВОДА ДЛЯ ПОИСКА ТЕЧЕЙ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Земфира Ирековна Гаязова¹, Екатерина Андреева Усанова² Науч. рук. к.т.н., доцент Шамиль Гаязович Зиганшин ^{1,2} ФГБОУ ВО «КГЭУ», г. Казань, Республика Татарстан ¹zemfira.gayazova2000@yandex.ru, ²usankate03@gmail.com

Аннотация. В работе представлена модель трубопровода с утечкой, построенная в среде *Ansys/Fluent*, необходимая для проведения исследований, установления зависимостей при поиске течей трубопровода методом конечных элементов.

Ключевые слова: модель, утечка, поиск течей, повышение эффективности, метод конечных элементов.

Шомахмадов И.Б. Перспективы развития реакторов с
теплоносителем из жидких металлов
Шубенков Е.В. Причины и сложности вывода из
эксплуатации уран-графитовых реакторов
Ямалов Б.Р. Изготовление таблеток диоксида урана,
материалы оболочек твэлов, конструкция твэлов
Яркова В.А. Перспективы развития плавучих атомных
теплоэлектростанций в России
Ярошевич Я.Э. Опреснение морской воды с помощью
ядерной энергетики
СЕКЦИЯ 2. Промышленная теплоэнергетика.
Эксплуатация и надежность энергоустановок и
систем теплоснабжения
Абдуллин Т.Р. Целесообразность использования
теплоизоляции на основе аэрогелевых композитов на объектах
энергетики
Александров Р.Н. Моделирование потока жидкости в
программном комплексе Ansys
Анпилогов Л.Д. Перспективные теплоизоляционные
материалы тепловых сетей
Анцупов Н.А. Влияние солнечной энергетики на
окружающую среду
Гаврилин В.В., Гаврилов А.С. Преимущества
автоматических установок поддержания давления перед
мембранными расширительными баками
Галимова А.Р. Численное моделирование дефекта резьбового
соединения стеклопластикового трубопровода
Гафиатуллина К.Р., Крайков М.Д., Федюхин А.В. Методика
расчета комбинированного коэффициента ускорения старения при
воздействии УФ-излучения, температуры и влажности на
теплоизоляционные материалы
Гафиатуллина К.Р., Крайков М.Д., Федюхин А.В. Расчет
эквивалентной длительности старения теплоизоляционных
материалов для климатических условий города Казани
Гаязова З.И., Усанова Е.А. Модель трубопровода для поиска
течей методом конечных элементов
Глухова П.Е., Колосов Г.В. Теплоснабжение жилового
массива от термального источника