6-8 декабря 2023 г.

УДК 661.183

Л.И. КАРИЕВА, студент гр. ЭОм-1-22 (КГЭУ) Научный руководитель Е.А. ЛАПТЕВА, к.т.н., доцент (КГЭУ) г. Казань

ОЦЕНКА ЭФФЕКТИВНОСТИ АДСОРБЕНТОВ

Адсорбция — это процесс, в ходе которого атомы, молекулы или ионы одного вещества накапливаются на поверхности другого вещества. Этот процесс играет важную роль в различных областях, включая промышленность, охрану окружающей среды и медицину. Выбор правильного адсорбента является ключевым аспектом процесса адсорбции и может существенно повлиять на эффективность и экономическую целесообразность данного процесса [1].

Адсорбенты играют ключевую роль в процессе адсорбции, обеспечивая взаимодействие с адсорбатом и обеспечивая эффективную очистку или разделение веществ [2].

Для того, чтобы выявить какой лучше адсорбент подойдет для химической промышленности, первым делом рассмотрим виды адсорбентов, их преимущества и недостатки, которые занесены в таблицу 1 [3].

Табл. 1

	Активированн ый уголь	Силикагель	Алюмосиликаты	Цеолиты
Достоинства	-хорошая	-высокая	-высокая	-высокая
	адсорбционная	поверхностная	поверхностная	поверхностная
	способность;	площадь;	площадь;	площадь;
	-широкий	-химическая и	-химическая	-возможность
	спектр	термическая	стабильность;	регенерации;
	применения;	стабильность;	-возможность	-химическая
	-относительная	-высокая	селективного	устойчивость
	дешевизна	емкость;	разделения;	
		-селективность	-возможность	
		к влаге	регенерации	
Недостатки	-может	-высокая	-ограниченная	-высокая
	потребоваться	стоимость;	емкость;	стоимость;
	регенерация	-низкая	-высокая	-ограниченные
	или замена;	механическая	стоимость;	возможности;
	-неэффективен	прочность,	-чувствительность	-затраты на
	для некоторых	-требует	к влажности	регенерацию
	типов	осторожного		
	загрязнений.	обращения		

После того, как мы рассмотрели адсорбенты в теоретическом плане, необходимо провести расчет и выявить какой же окажется эффективнее при работе с адсорбером периодического действия.

В качестве поглотителя будем применять поочередно 4 вида адсорбента, представленных в таблице 1.

Перепад давления насыпного слоя равен:

$$\Delta P = \lambda \frac{H}{d_2} \frac{\rho \omega_{ucm}^2}{2} = 7, 2 \cdot \frac{0.9}{0,002} \cdot \frac{1, 2 \cdot 0, 22^2}{2} = 90,33 \ \Pi a,$$
 (1)

где λ -коэффициент трения; ω_{ucm} -истинная скорость потока паровоздушной смеси; d_{α} -эквивалентный диаметр.

В неподвижном слое поглотителя коэффициенты массоотдачи можно вычислить по уравнениям для ламинарного и турбулентного режима соответственно:

$$\beta = 0.62 \left(\frac{\Delta P \varepsilon_{cs} V}{a_{\nu} H L \rho} \right)^{1/3} (Pr)^{-2/3}$$
 (2)

$$\beta = 0.175 \left(\frac{\varepsilon_{cs} V}{\rho} \right)^{0.25} \left(Pr \right)^{-2/3}, \tag{3}$$

где ε_{cs} -удельный свободный объем адсорбента; ν -коэффициент кинематической вязкости; a_{s} -удельная поверхность адсорбента.

Коэффициент массоотдачи для активированного угля равен:

$$\beta = 0.62 \left(\frac{90.33 \cdot 0.375 \cdot 15 \cdot 10^{-6}}{720 \cdot 0.9 \cdot 62.8 \cdot 10^{-4} \cdot 1.2} \right)^{1/3} (1.74)^{-2/3} = 0.02 \ \text{m/c},$$
 (4)

Продолжительность адсорбции:

$$\tau = \sqrt{\Gamma \cdot H / \omega_u} - b\sqrt{\Gamma / \beta_y}$$

$$\tau = \sqrt{11000 \cdot 0.9 / 0.22} - 1.84\sqrt{11000 / 14.53} = 26086,67 \text{ } ce\kappa = 7.25 \text{ } 4,$$
(5)

где β_{y} - объемный коэффициент массоотдачи.

Определим количество паровоздушной смеси, проходящей через адсорбер за это время:

6-8 декабря 2023 г.

$$V = \frac{\pi D_a^2}{4} w\tau = \frac{\pi \cdot 0.11}{4} \cdot 0.22 \cdot 161.5 = 511.04 \text{ m}^3$$
 (6)

По условиям, за один период через адсорбер должно пройти 100 м³. Следовательно, диаметр адсорбера:

$$D_a = \sqrt{\frac{100 \cdot 4}{\rho_{_H} \cdot \pi \cdot H}} = \sqrt{\frac{100 \cdot 4}{500 \cdot 0, 9 \cdot \pi}} = 0,149 \text{ m},$$
 (7)

где $\rho_{_{\scriptscriptstyle H}}$ -насыпная плотность адсорбента; H- высота слоя угля.

Высчитаем количество активного угля необходимое на одну загрузку:

$$G_1 = \frac{\pi D_a^2}{4} H \rho_{_H} = \frac{0.149^2 \pi}{4} \cdot 0.9 \cdot 500 = 7.84 \text{ Ke}$$
 (8)

Аналогично рассчитаем остальные виды адсорбентов и внесем в таблицу 2.

Табл.2

	Активированный уголь	Силикагель	Алюмосиликаты	Цеолиты
G, кг	7,840	10,740	4,930	7,320
Da, м	0,149	0,147	0,088	0,122
ΔР, Па	90,326	29,687	446,054	111,514
В, м/с	0,020	0,016	0,332	0,023
τ, ч	7,246	7,407	20,989	10,866
V, M^3	511,044	441,504	1097,246	647,662

На основании расчетов можно сделать вывод, что время, затраченное на процесс адсорбции, больше у алюмосиликатов, следовательно, его теоретически не выгодно использовать на производстве. В то время как время, затрачиваемое на процесс адсорбции с использованием активированного угля, будет меньше, что говорит о более быстрой и эффективной очистке среды, а также это может снизить затраты на материал и энергию, что является важным фактором при выборе адсорбента.

Об адсорбционной емкости адсорбентов свидетельствует разница в объеме загружаемого материала. Загрузка активированного угля в адсорбер может происходить в меньших объемах, что позволяет сократить расход этого материала.

В следствие чего активированный уголь будет намного эффективнее и экономичнее по сравнению с остальными видами адсорбентов.

В заключение статьи можно отметить, что правильный подход к выбору адсорбента важен для достижения поставленных целей в области адсорбционных процессов. Расчет выбора адсорбента, основанный на фундаментальных принципах и научных данных, обеспечивает оптимальные результаты и эффективное использование адсорбционных материалов.

Список литературы:

- 1. Кариева, Л. И. Выбор наиболее эффективного адсорбента для осушки воздуха / Л. И. Кариева // Тинчуринские чтения 2023 "Энергетика и цифровая трансформация": Материалы Международной молодежной научной конференции. В 3-х томах, Казань, 26–28 апреля 2023 года / Под общей редакцией Э.Ю. Абдуллазянова. Том 2. Казань: Казанский государственный энергетический университет, 2023. С. 566-568.
- 2. Патент № 2566141 С1 Российская Федерация, МПК В01Ј 20/30, В01Ј 20/16. способ получения адсорбента: № 2014123241/05: заявл. 06.06.2014: опубл. 20.10.2015 / В. Ф. Новиков, О. Р. Каратаев, А. А. Карташова [и др.]; заявитель Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ").
- 3. Сравнительная характеристика адсорбентов для жидкостной колоночной хроматографии / Ю. В. Снигирева, А. В. Дмитриева, Р. Н. Хизбуллин [и др.] // Энергетика транспорта. Актуальные проблемы и задачи: сборник научных трудов IV Международной научно-практической конференции, Ростов-на-Дону, 06–07 октября 2020 года. Ростов-на-Дону: Ростовский государственный университет путей сообщения, 2020. С. 95-98.

Информация об авторах:

Кариева Лиана Ильдаровна, студент гр. ЭОм-1-22, КГЭУ, 420066, г. Казань, ул. Красносельская 51

Лаптева Елена Анатольевна, к.т.н., доцент, КГЭУ, 420066, г. Казань, ул. Красносельская 51