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Abstract: Fuel cells are a promising source of clean energy. To find optimal parameters for their
operation, modeling is necessary, which is quite difficult to implement taking into account all the
significant effects occurring in them. We aim to develop a previously unrealized model in COMSOL
Multiphysics that, on one hand, will consider the influence of electrochemical heating and non-
isothermal fluid flow on the temperature field and reaction rates, and on the other hand, will
demonstrate the operating mode of the Solid Oxide Fuel Cell (SOFC) on carbonaceous fuel. This
model incorporates a range of physical phenomena, including electron and ion transport, gas species
diffusion, electrochemical reactions, and heat transfer, to simulate the performance of the SOFC. The
findings provide a detailed view of reactant concentration, temperature, and current distribution,
enabling the calculation of power output. The developed model was compared with a 1-kW industrial
prototype operating on hydrogen and showed good agreement in the volt-ampere characteristic with
a deviation not exceeding 5% for the majority of the operating range. The fuel cell exhibits enhanced
performance on hydrogen, generating 1340 W/m2 with a current density of 0.25 A/cm2. When fueled
by methane, it produces 1200 W/m2 at the same current density. Using synthesis gas, it reaches its
peak power of 1340 W/m2 at a current density of 0.3 A/cm2.

Keywords: SOFC (solid oxide fuel cell); COMSOL Multiphysics; fuel cell modelling; electrochemical
reactions; power output calculation; reactants concentration

1. Introduction

Fuel cells are fundamentally made up of an electrolyte layer flanked by two porous
electrodes. The central role of the electrolyte layer, often considered the core of the fuel cell,
is to determine the operational temperature range of the cell, the nature of electrochemical
reactions occurring at the electrodes, and the kind of catalyst materials within the electrodes.

In SOFCs, electrochemical reactions occur at the triple phase boundary (TPB) where
the electrolyte, electrode, and gas phase meet [1,2].

At the anode, hydrogen gas is oxidized, releasing electrons into the circuit and protons
into the electrolyte. At the cathode, oxygen from the air accepts these electrons and reacts
with the protons to form water. This electrochemical process is accompanied by transport
phenomena, including electronic and ionic conduction, gas diffusion, and heat transfer.

Various configurations of planar SOFC designs exist, including electrode-backed
SOFCs, SOFCs with electrolyte support, and symmetrical SOFCs [3,4]. Symmetrical SOFCs
enhance the harmony between cell parts and streamline the cell design. Anode-backed
SOFCs can notably diminish resistive losses, leading to a decrease in the SOFC’s operational
temperature, and a more robust anode can facilitate internal reforming [5].
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Our goal is to create a model for different types of fuel, providing data on species
composition, temperature, and power, while considering the heat transfer due to the
movement of the working gas. Modeling data is crucial for understanding the operation of
the fuel cell and optimizing its performance.

COMSOL Multiphysics is a versatile tool that offers advanced capabilities for modeling
various physical processes. It is efficient and effective in numerical simulation in several
fields such as: porous media, desalination, renewable energy, chemical engineering, and
heat exchangers [6–11] making it particularly suitable for simulating fuel cell dynamics.

COMSOL is widely used for SOFC simulations. However, in most of these, either the
temperature distribution was not accounted for, the effects of non-isothermal flow and
electrochemical heating were not considered, or the selection of the exchange current was
not disclosed [3,4,12–14].

In our study, we aim to address these issues. The developed model is compared with
a real, industrial prototype running on hydrogen. To the best of our knowledge, there have
been no similar models implemented in COMSOL Multiphysics according to the literature.
However, there are similar models for methane fuel cells, such as the research conducted
by Cai, W [5]. Nevertheless, in this study, a different fuel composition was considered, and
the temperature regime, power, and configuration of the fuel cell also differed.

2. Materials and Methods

The 3D geometric representation was crafted based on the actual stack design’s spec-
ifications. This model takes inspiration from a 1 kW planar SOFC with anode support,
originating from China. The SOFC’s dimensions are 16 × 16 cm2, with a designated
active region measuring 10 × 10 cm2. Gas pathways for entry and exit are facilitated
through specific inlets and outlets in the stack. Every module of the fuel cell encompasses
a membrane-electrode assembly, which includes the cathode (or the positive electrode),
the electrolyte, the anode (or the negative electrode), channels for both air and fuel and
interconnecting structures. Consequently, the electrochemically active region for a stack of
30 SOFC elements is composed of 900 uniform module blocks. Given their identical nature,
a computational simulation was executed for a single SOFC cell block. The block’s specific
measurements can be found in Table 1.

Table 1. SOFC channel geometric parameters.

SOFC Geometric Parameter Value

Channel width 1.4 mm
Rib width 2 mm

Anode thickness 550 µm
Cathode thickness 30 µm

Electrolyte thickness 15 µm
Gas flow channel height 1.6 µm

The model being developed is schematically shown in Figure 1. Here, the compu-
tational domains are correlated with the set of physics being solved, and materials and
boundary conditions are shown. The sets of equations corresponding to each physics will
be discussed further.
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Figure 1. Schematic model of the fuel cell indicating processes and boundary conditions.

The conductivity of the electrolyte is primarily represented by ionic conductivity.
Given that the electronic conductivity is extremely minimal, we will not consider it in
this simulation. Typically, ionic conductivity falls within the range of 1 to 10 S/m and is
temperature-dependent. Additionally, there exists a model for estimating conductivity
based on activation energy:

σel = σoT−1exp
(
− Eel

RT

)
(1)

COMSOL already incorporates a temperature-dependent conductivity model for the
8YSZ electrolyte material. This dependency is established through the interpolation of
tabular data. For instance, the conductivity is 5.1 S/m at 800 ◦C, 7.44 S/m at 850 ◦C, and
10.66 S/m at 900 ◦C.

Simultaneously, an experiment cited in [15] found a value quite close to this, at 4.2 S/m,
at a temperature of 800 ◦C. Moving forward, we will use the data embedded in COMSOL
for our model.

High conductivity is crucial for an anode. In the case of Ni/YSZ material, Ni provides
an effective electronic conductivity of about 100,000 S/m, [16,17], while YSZ contributes an
ionic conductivity of about 1 S/m [18].

As per the manufacturer’s data, our anode exhibits an electronic conductivity
σa = 333330[S/m].

LSCF + GDC cathode enables both kinds of conduction. The ionic conductivity is
approximately 5 S/m, and the electronic conductivity is also significantly higher.

According to the manufacturer of our sample, our cathode displays an electronic
conductivity σc of 7937 [S/m].

2.1. Electrochemistry
2.1.1. Electromotive Force

The following reactions occur in a fuel cell when hydrogen is used as a fuel. The
inclusion of additional components such as methane and syngas is elaborated upon in
Section 2.5.

Anode : H2 → 2H+ + 2e−

Cathode : 1
2O2 + 2e− → O2−

Anode : O2− + 2H+ → H2O
Overall : H2 +

1
2O2 → H2O

(2)
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The electromotive force of the aforementioned electrochemical system is depicted by
the Nernst equation [19]:

Eeq = Eeq,re f −
RT
nF

ln
Π(x v

pt

)
Π(x v

rt
) (3)

Eeq—the reversible voltage or Equilibrium potential in terms of COMSOL; xv
pt and

xv
rt—the concentration of the reactants and products at the reaction sites, and the superscript

v stands for the stoichiometric coefficient

Eeq,re f =
−∆G0

r
nF

(4)

where Eeq,re f represents the standard electrochemical cell voltage [20] (also known as the
reference equilibrium potential in COMSOL terms). It is tabulated for most common
reactions under standard conditions (∆G0r).

For instance, [19] provides the following equation for the reference equilibrium potential:

Eeq,re f = 1.271− 2.7311−4T (5)

COMSOL Multiphysics employs the same approach, but in this case, Eeq,re f is deter-
mined based on changes in enthalpy and entropy, using data from NIST [21].

2.1.2. Electrode Kinetics

The Butler-Volmer equation, in the form proposed by Kawada et al. [22], is extensively
used in the numerical simulation of SOFCs, as evidenced by references [23–27]. The
equation accounts for the rate of an electrochemical reaction by considering both forward
and reverse reaction rates.

This is frequently employed in a form that associates current density per unit volume
with the TPB (termed as ‘Specific Surface Area’ in COMSOL).

The equation is then given by:

i = lTPBi0

[
exp

(
αanF
RT

)
ηact − exp

(
−αcnF

RT

)
ηact

]
(6)

where i—the volumetric exchange current density, A/m3; i0—is the equilibrium exchange
current density per unit volume associated with the TPB reaction in the anode (A/m3)
when E = Eeq and it is estimated based on the fitting to the experimental data [28]; ηact
is the activation overpotential, V; n is the number of electrons involved in the electrode
reaction; αa and αc are the charge transfer coefficients that are obtained by fitting to the
experimental data [29], and F is the Faraday constant.

The activation overpotential is defined as:

ηact = ϕs − ϕl − Eeq (7)

φs—denotes the electric potential at the surface; φl—is the electrolyte potential;
Eeq—denotes the equilibrium electrode potential; Eth = φs − φl

To utilize the Butler-Volmer equation, one needs to determine the equilibrium ex-
change current density, charge transfer coefficients, and TPB length.

2.1.3. Equilibrium Exchange Current Density

In the anodes of SOFCs, electrochemical oxidation of hydrogen occurs at the TPB.
Currently, the estimation of the charge-transfer rate in SOFC electrodes remains a subject of
active research, with numerous studies devoted to investigating the charge-transfer rate
in SOFC electrodes. T. Yonekura [21] consolidated the calculations of many other authors,
presenting empirical formulas for the exchange current density at the anode and cathode,
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while also reviewing the existing coefficients in the specified empirical formula. Kota
Mioshi [30] demonstrates a similar approach in his studies of porous LSM cathodes.

i0,c = γc

(
PO2

PO2,re f

)C
exp

(
−Eact,c

RT

)
i0,a = γa

(
PH2

PH2,re f

)A( PH2O
PH2O,re f

)B
exp

(
−Eact,a

RT

) (8)

While determining the equilibrium potential using the Nernst Equation, the equilib-
rium exchange current density i0’s concentration reliance can be consistently established
thermodynamically. This is in line with the Nernst equation, combined with a reference
exchange current density i0,ref (A/m2), representing the exchange current density when
Eeq matches Eeq = Eeq,ref.

So equilibrium exchange current density:

io = io,re f (T) ∏
i:vi>0

(
pi

pi,re f

)αcvi/n

∏
i:vi<0

(
pi

pi,re f

)−αavi/n

(9)

However, we still need to specify io,re f for anode and cathode. Based on the empirical
formula [30]:

io,re f = γexp
(
−Eact

RT

)
(10)

According to (10) io,re f _c = 0.11A/m2

Unfortunately, a literature review has shown that the values can vary greatly, so we
will choose this value based on our own experimental data.

The most commonly used form of the Butler-Volmer formula, given by Equation (6),
assumes charge transfer coefficients αa = 0.5 and αc = 1− αa = 0.5 [31].

2.1.4. Specific Surface Area

This parameter designates the surface area where the catalytic reaction will occur.
It can be derived from the outcomes of 3D-FIB modeling. However, it is important to
highlight that not all of the surface area will necessarily partake in the reaction.

As per Vivet et al. [32], who conducted a FIB-SEM procedure to obtain a high-quality
3D structure of the electrode, a sample volume of 8.66× 9.79× 11.41 µm3 was reconstructed.
This unveiled the presence of 99.8%, 99.1%, and 87.4% percolation of the pore, YSZ, and
Nickel in the structure, respectively. The specific surface areas of the Pore, YSZ, and Nickel
phases were observed as 4.27, 4.24, and 2.33 µm2/µm3, respectively. Approximately 50%
of the Nickel surface area was assigned as a pore region which could potentially be utilized
for surface catalytic reactions. So, for the anode lTBP,a = 1.165 µm2/µm2.

2.2. Heating

In an electrochemical cell, certain factors can lead to irreversible voltage losses [33],
including:

• Electrochemical heating
• Charge transport in the electrolyte (Joule heating)
• Charge transport in the solid conductor materials (Joule heating)
• Heat of mixing

2.2.1. Electrochemical Heating

Heat is produced as a result of the electrochemical reactions taking place at the active
sites where the electrolyte meets the electrodes [34].
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In order to calculate the reaction heat source, we can use thermoneutral voltage

Etherm =
−∆H0

r
nF

(11)

Thermodynamic formulas for gaseous species of Hi(T) at a standard partial pressure
of 1 atm are derived from NIST datasets [21].

q = i
(
Eeq − Eth

)
(12)

2.2.2. Joule Heating Due to Charge Transport

When charged particles move within an electric field, electrical energy transforms into
thermal energy. The terms representing Joule heating in both the electrode and electrolyte
phases are:

q =
i2

σ
(13)

Obviously, it is necessary to take into account both the ionic and electronic components
of the current in the calculation. The electronic and ionic conductivities will also vary for
different sections of the fuel cell.

2.2.3. Heat Generation from Mixing Effects

When the enthalpy is influenced by the local concentration of the species involved in
the reaction, it is essential to consider the heat sources related to concentration gradients.
These gradients lead to the molecular flux of the reacting species moving from the bulk to
the surface, ensuring the cell’s thermal equilibrium. While the effects of heat from mixing
are usually minimal (non-existent for ideal gases), they are often omitted in Electrochemistry
interfaces.

2.3. Fluid Dynamic Model

This section describes mass transport in porous media.
We consider the fluid flow in the channel to be laminar, as for the given geometry and

flow velocity, the Reynolds number will be significantly less than 2000. For instance, for
methane flow in the channel at a temperature of 900 ◦C, the Reynolds number will be 3.6.

In the gas phase nodes, calculations are made for a series of mass fraction variables,
denoted as ωi, with i being the species index. The primary equations used for these
calculations stem from the Maxwell–Stefan equations combined with Darcy’s Law.

2.3.1. Maxwell–Stefan Description

Consider a reactive flow composed of a blend with species i ranging from 1 to Q
and reactions j from 1 to N. The subsequent section delineates the mass transport for a
specific species:

∂

∂t
(ρωi) +∇·(ρωiu) = −∇·ji + Ri (14)

where ρ—denotes the mixture density, kg/m3, u the mass averaged velocity of the mix-
ture, m/s; ωi—the mass fraction; ji—the mass flux relative to the mass averaged velocity,
kg/(m2·s)]; Ri—the rate expression describing its production or consumption, kg/(m3·s).

For a mixture with multiple components, the mass flux, when compared to the average
mass velocity, ji, can be characterized using the generalized Fick’s equations. [35]:

ji = −ρωi

Q

∑
k=1

∼
Dikdk − DT

i ∇lnT (15)

where
∼
Dik are the multicomponent Fick diffusivities, m2/s; DT

i are the thermal diffusion
coefficients, kg/m·s; dk is the diffusional driving force acting on species k, 1/m.
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Utilizing the Maxwell–Stefan diffusion approach, the transport equations related to
the mass of the species are as follows:

ρ
∂

∂t
(ωi) + ρ(u·∇)ωi = ∇

(
ρωi

Q

∑
k=1

∼
Dikdk + DT

i
∇T
T

)
+ Ri (16)

In the case of ideal gas mixtures, the force driving diffusion is: [36]:

dk = ∇xk +
1
p

[
(x k −ωk)∇p− ρωkgk + ωk

Q

∑
l=1

ρωl gl

]
(17)

where xk mole fraction; p—is the total pressure, Pa; gk—an external force (per unit mass)
acting on species k, m/s2.

For ionic species, the external force is generated by the presence of an electric field.

2.3.2. Binary Diffusion Coefficients

The determination of the inherent binary diffusion coefficients is carried out utilizing
the Fuller–Schettler–Giddings (FGS) approach [36]:

D0
i,j =

1.01325·10−2T1.75
(

1
Mi

+ 1
Mj

)1/2

P
(
(∑i v)

1
3 +

(
∑j v

) 1
3
) (18)

where T denotes the temperature, K; Mi the molecular weight of species i, g/mol; and vi
are the atomic diffusion volumes (Fuller diffusion volume), cm3.

According to Darcy’s law, the velocity field is influenced by factors such as the pressure
gradient, the viscosity of the fluid, and the architecture of the porous material:

u = − k
η
∇p (19)

In this equation, u is the Darcy’s velocity or specific discharge vector, m/s; k is the
permeability of the porous medium m2; η is the fluid’s dynamic viscosity Pa·s;

The mixture viscosity of the gas phase is based on the kinetic theory by Brokaw [36]:

ηv = ∑
i

(
xiηi,v

∑j xjψi,j

)
(20)

where

ψi,j = Ai,j

√
ηi,v

ηj,v
(21)

It can be obtained by Herning and Zipperer approximation as molar mass ratio [37] or
directly via interaction parameter Ai,j. We use the last-mentioned approach.

Ai,j =
βi,j√
RMi,j

1 +
RMi,j − RM0.45

i,j

2
(
1 + RMi,j

)
+

1+RM0.45
i,j√

βi,j(1+RMi,j)

 (22)

with

βi,j =

(
4Mi Mj(

Mi + Mj
)2

)1/4

, RMi,j =
Mi
Mj

(23)

where ηi,v is the vapor viscosity of each individual species, and Mi are the molecular weights.
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2.4. Heat Transfer

A prevalent assumption in SOFC modeling is the premise of local thermal equilibrium
(LTE) [38–40]. In the porous catalyst layer, this approach enables the use of effective heat
conductivity and heat capacity, which can be calculated as follows [41,42]:

ke f f = ε·k f + (1− ε)k f (24)

cp,e f f = ε·cp, f + (1− ε)cp, f (25)

where ε is the porosity; e f f means effective; s means solid and f means fluid (gas) phase.
Yet, certain common conditions observed in the porous SOFC electrodes challenge this

assumption: (1) extremely low flow with a minimal Reynolds number, (2) occurrence of
heat generation in volume, and (3) a significant disparity in thermal conductivity between
the gaseous and solid phases.

The gas phase mixture thermal conductivity, which may be used in heat transfer
simulations, is calculated according to:

λv = ∑
i

(
xjλi,v

∑j xj ϕi,j

)
(26)

ϕi,j =
1
4

1 +

(
ηi,v

ηj,v

(Mj

Mi

) 3
4 T + 3

2 Tb,i

T + 3
2 Tb,j

)1/22T + Sij

√
9
4 Tb,iTb,j

T + 3
2 Tb,i

 (27)

In the aforementioned equation, the summations account for all active species. Here,
λi,v and ηi,v represent the individual vapor thermal conductivity and dynamic viscosity
correlations based on temperature for the pure gases, respectively. The formula also takes
into account the normal boiling points Tb,i, and the molecular weights of the species. The
coefficient Sij is set at 0.773 when either i or j corresponds to the index of water (or steam).
In other scenarios, Sij is set to 1.

Given that this equation is dependent on the viscosities of individual species, ther-
mal conductivity is determined solely in gas phase domains using the built-in dynamic
viscosities, without any user-defined modifications.

The heat capacity is calculated as:

cp,e f f = ∑
i

ωicp,i

Mi
(28)

cp,i is the species heat capacity in J/(mol·K).
According to the manufacturer’s specifications, the specific heat for the YSZ + NiO

anode and the LSCF + GDC cathode is 450 J/kgK each.

2.5. Model for Additional Reactions

In order to model SOFC on methane several additional reactions are required. The
first one is methane reforming. Following this is the Water Gas Shift (WGS) reaction.

The reforming process of methane is characterized by the following two equations

CH4 + H2O = 3H2 + CO

CO + H2O = H2 + CO2

Steam reforming is widely recognized as a highly endothermic reaction, whereas
the water-gas shift reaction exhibits mildly exothermic characteristics. In our analysis,
the focus on the reaction rate is mainly on steam-methane reforming. This is because, at
elevated temperatures, the water-gas shift reaction is swift and achieves equilibrium nearly
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immediately [43,44]. Therefore, for simplicity, we assume the water-gas shift reaction rate
as 10,000 [mol/(m3·s)].

As highlighted earlier, three formulas are utilized to outline reaction kinetics. To
sidestep intricacy and maintain computational efficiency, we employ the subsequent ex-
pression in our study. This expression incorporates the partial pressures of both methane
and steam to depict the kinetics.

Rsmr = ksmr(PCH4)
a(PH2O)

b (29)

ksmr = Aexp
(
− E

RT

)
(30)

In Equation (29),
Rsmr is the methane consumption rate per second and per unit exposed Ni area; ksmr is

the reaction coefficient ksmr = 1.42 × 103, mol/(s·m2·Pa) [45] PCH4 and PH2O are the partial
pressures of methane and steam at the reaction site, respectively.

In Equation (30),
A is the frequency factor A = 1.42× 103 [mol/(s·m2·Pa)]; and E is the activation energy

of the reaction. E = 82 × 103 [J/mol] [43]
By quantifying the area density of Ni, we can represent the rate of methane consump-

tion in the subsequent manner:

Rchvol = Rchvol ∗ SNi−pore (31)

SNi−pore represents the cumulative area of Ni oriented towards the pores in the sample.
SNi−pore is obtained as follows:

SNi−pore =
W

ρANi−pore
(32)

W—SOFC volume, obtained from geometrical parameters.
So, according to the reactions and stoichiometric coefficients, we can obtain the con-

sumption/production
Ri = v ∗ Rchvol ∗ PCH4 ∗Mi (33)

The heat of the reaction is calculated via enthalpy change as

Q = R ∗ ∆H (34)

The enthalpy change for methane reforming is calculated according to the method
depicted detailed in the reference [45]. Water Gas-shift reaction enthalpy change is
∆H = −41.6 kJ/mol [46].

2.6. Model Multiphysics

To simultaneously solve the aforementioned equations while accounting for non-
isothermal flow, we utilize additional modules found in the multiphysics section of COM-
SOL Multiphysics.

In Multiphysics, the Reacting Flow module facilitates a two-directional coupling
mechanism. This allows the velocity field and pressure layout, as determined by the fluid
flow interface, to be integrated into the Fuel Cell module. Simultaneously, parameters like
density and dynamic viscosity, as deduced by the Fuel Cell module, are incorporated into
the fluid flow interface.

The Electrochemical Heating module within Multiphysics is designed to specify do-
main and boundary heat sources in a heat transfer interface. This is based on the aggregate
of irreversible heat components (which encompasses Joule heating and activation losses)
and reversible heat within an electrochemical interface. Additionally, this module aligns
the temperature in the electrochemical interface with that of the heat transfer interface.
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The Nonisothermal Flow module in Multiphysics is employed to address the conserva-
tion principles of energy, mass, and momentum in fluids and porous structures, along with
energy conservation in solid materials. The described conditions are shown schematically
in Figure 2
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2.7. Model Inputs

A comprehensive model of a solid oxide fuel cell requires various inputs that describe
the materials, operating conditions, physical geometry, and other factors.

Porosity: The porosity of the electrodes and electrolytes affects the diffusion of gas
species within these materials. The porosity must be specified for each material in the cell.
pora = 0.36; porc = 0.39.

Permeability: This is a measure of the ability of a porous material to allow flu-
ids to pass through it. The permeability of the anode and cathode must be defined.
perma = 2·10−10 [m2]; permc = 2·10−10 [m2].

Operating Temperature: The temperature at which the fuel cell operates. In this case,
the operating temperature was about 900 degrees Celsius.

Inlet parameters:
Air: 0.23 O2, 0.765 N2, 0.005 H2O; 2/15 L/min; Tin = 650 ◦C.
Methane fuel: 0.995 CH4, 0.005 H2O; 1/15 L/min; Tin = 900 ◦C.
Syngas fuel: 0.08 N2, 0.067 H2, 0.225 CO, 0.25 CO2, 0.245 CH4, 0.133 H2O; 1/15 L/min;

Tin = 900 ◦C.

2.8. Numerical Model Data
2.8.1. Mesh

When constructing the mesh, we set a condition that its step should be 12 times
smaller than the thickness of each of the modeled elements. Thus, since the electrolyte is the
thinnest element with a thickness of 15 µm, the maximum mesh step across the thickness
of this element was 1.25 µm.

Additionally, the mesh step was set to decrease closer to the boundaries of the elements.
Along the length, the mesh step was 1 mm, and in width, it was 0.15 mm.
The final mesh consists of 112,752 domain elements, 26,928 boundary elements, and

2188 edge elements. Its appearance is shown in Figure 3.
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2.8.2. Mesh Sensitivity Analysis

To ensure the accuracy and reliability of our numerical simulations for the SOFC
model, a grid sensitivity analysis was conducted. This step is pivotal in confirming that our
results are not influenced by the mesh size and that the chosen mesh captures the intricate
physical phenomena within the SOFC effectively.

Methodology:
Three distinct mesh configurations were considered:
Coarser Configuration:
34,560 domain elements, 12,192 boundary elements, and 1464 edge elements.
Minimum Element Size: 1.875 µm
Maximum Element Size: 1.5 mm
Standard Configuration:
112,752 domain elements, 26,928 boundary elements, and 2188 edge elements.
Minimum Element Size: 1.25 µm
Maximum Element Size: 1 mm
2× Configuration:
866,880 domain elements, 105,244 boundary elements, and 4344 edge elements.
Minimum Element Size: 0.625 µm
Maximum Element Size: 0.5 mm
The primary metrics for comparison across these grids were temperature distribution,

current density, average cell power, and reactant concentrations. The aim was to ascertain
the deviation in these metrics across different mesh sizes and determine the optimal
configuration.

Results:
Comparing the Standard and Coarser configurations, the difference in maximum

temperature was about 3% for all fuels. For other parameters, the difference was less than
2%. Between the Standard and 2× configurations, the difference was less than 0.001%,
which is close to the specified tolerance.

Computational Time:
Standard Configuration: 21 min
1.5× Configuration: 5 h 19 min
3× Configuration: 32 h
Conclusion:
Based on the grid sensitivity analysis, the 1.5×mesh was selected for further simula-

tions presented in this paper. This choice strikes a balance between computational efficiency
and the precision required for SOFC simulations, ensuring the robustness of our findings.
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2.8.3. Solver Configuration and Convergence

The precision and efficiency of our numerical simulations are contingent upon the
solver configuration. This section elucidates the solver settings and parameters employed
for our stationary SOFC simulations in COMSOL Multiphysics.

Linear Solver
Type: Direct.
Method: MUMPS (Multifrontal Massively Parallel Sparse Direct Solver).
Preconditioner: ILU (Incomplete LU factorization).
Non-linear Solver:
Method: Newton.
Convergence Criterion: Residuals of all equations dropping below a tolerance of

1 × 10−6.
Maximum Iterations: 50.
Parameter Variation:
For our simulations, the cell voltage was varied from 0.05 to 0.95 volts in increments

of 0.1 volts.

2.8.4. Hardware Specifications

Processor: AMD Ryzen 7 3700X
RAM: 64 GB DDR4
Storage: 2TB NVMe SSD
Computational Time:
The total computational time for the simulations to converge was about 5 h for hydro-

gen fuel and about 6 h for methane and syngas fuels.

3. Results and Discussion

Upon running the simulations with the defined parameters and boundary conditions,
we obtained the distributions of temperature, current, and reactant concentrations across
the fuel cell. From there, we can also calculate the overall power output. Let us delve into
the details.

3.1. Temperature Distribution

From the temperature distribution illustrated in Figure 4, we can observe that as cold
air travels through the channel, it warms up from an initial temperature of 923 K to a
maximum of 1556 K near the channel’s midpoint. This heating is a result of the electro-
chemical processes occurring within the fuel cell, as previously described. Moreover, it can
be seen that towards the end of the channel, the air temperature drops to approximately
1250 K. This temperature decrease is attributable to two factors: the diminishing intensity
of electrochemical processes due to reduced air concentration, and the cooling effect caused
by heat conduction from the proximity to the hydrogen inlet.

This illustration also distinctly depicts the forward shift of the temperature gradient
along the channel relative to the electrode temperature, an effect resulting from heat
dissipation due to the movement of the medium.

When comparing different types of fuels, it is evident that carbonaceous fuels lead to
approximately 70 K less heating, which is attributed to endothermic reactions. This also
impacts the performance of the fuel cell, as will be demonstrated later.

A temperature profile similar to ours has also been observed by other researchers. The
temperature peak is typically seen closer to the center of the fuel cell [9].



Energies 2023, 16, 7265 13 of 20Energies 2023, 16, x FOR PEER REVIEW 13 of 20 
 

 

 
Figure 4. Temperature distribution on hydrogen fuel, V = 0.15 V. 

This illustration also distinctly depicts the forward shift of the temperature gradient 
along the channel relative to the electrode temperature, an effect resulting from heat dis-
sipation due to the movement of the medium. 

When comparing different types of fuels, it is evident that carbonaceous fuels lead to 
approximately 70 K less heating, which is attributed to endothermic reactions. This also 
impacts the performance of the fuel cell, as will be demonstrated later. 

A temperature profile similar to ours has also been observed by other researchers. 
The temperature peak is typically seen closer to the center of the fuel cell [9]. 

3.2. Current Distribution 
Regions with high current density indicate areas where fuel utilization is efficient 

(Figure 5). Essentially, the current distribution serves as a map showing the zones where 
electrochemical processes are actively occurring. As the fuel becomes depleted, there is a 
corresponding decrease in current density. 

 
Figure 5. Current density distribution on hydrogen fuel, V = 0.65 V. 

3.3. Reactants Concentration 

Figure 4. Temperature distribution on hydrogen fuel, V = 0.15 V.

3.2. Current Distribution

Regions with high current density indicate areas where fuel utilization is efficient
(Figure 5). Essentially, the current distribution serves as a map showing the zones where
electrochemical processes are actively occurring. As the fuel becomes depleted, there is a
corresponding decrease in current density.
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3.3. Reactants Concentration

In this section, we examine the component fractions while operating on methane and
synthesis gas, as these represent the most intriguing scenarios.

In the case of methane (Figure 6), we observe a progressive decrease in its concentration
due to the ongoing reforming reaction. This reaction produces hydrogen and carbon
monoxide, causing an increase in their concentrations along the channel length.
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Figure 6. Mole fraction V = 0.15 V, methane fuel: (a) CH4; (b) CO2.

As the concentration of carbon monoxide increases, the water-gas shift reaction be-
comes more active, leading to a rise in carbon dioxide concentration, as shown in Figure 5.

Towards the end of the channel, with a scarcity of methane, the rate of carbon monox-
ide production becomes slower than its consumption due to the water-gas shift reaction.
This results in a decreased carbon monoxide concentration, as illustrated in Figure 6. We
notice an intriguing situation regarding hydrogen distribution. As a result of the ongoing
reforming and water-gas shift reactions, its concentration increases, peaking towards the
middle of the channel. However, with a depletion in reactants on one hand, and an acceler-
ation of the electrochemical reaction on the other, the hydrogen proportion starts to decline.
This process is shown in Figure 7.
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When using a synthesis gas mixture, we witness similar reactions. Nevertheless, due
to the varying initial concentrations of components, their distribution along the channel
length differs compared to methane fuel.

For instance, the high flow rate of the water-gas shift reaction and the initial presence
of its components result in a concentration peak of hydrogen at the beginning of the channel.
Subsequently, as a result of electrochemistry, the concentration of hydrogen falls (Figure 8).
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The high rate of the water-gas shift reaction also impacts the distribution of carbon
monoxide and carbon dioxide, as evidenced in Figure 9. Initially, carbon monoxide rapidly
transforms into carbon dioxide. However, with a lack of water vapor, this reaction con-
cludes swiftly. As the concentration of water vapor and carbon monoxide increases, the
concentration of carbon dioxide begins to rise along the length of the channel, reaching its
peak at the end. This is due to the absence of reactions that would consume carbon dioxide.
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3.4. Power Output, Model Verification

The average current density of the cell is calculated using COMSOL tools. In this
instance, the z-component of the computed current density vector in the electrolyte [A/cm2]
is averaged over the volume of the electrolyte. Averaging is achieved through fourth-order
volume integration. The power output of the cell (power density, to be precise) is calculated
by multiplying the average current density of the cell by the cell voltage.

As shown in Figure 10, the predicted current density versus voltage from the numerical
model demonstrates acceptable accuracy compared to the manufacturer’s data. For the
majority of the operating range, the deviation does not exceed 6 percent. It also aligns with
the results obtained by other researchers [47–49]. However, simulations indicate different
current densities at lower voltages.
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Figure 10. Volt-ampere characteristic for hydrogen fuel.

We assume that this deviation is a result of the fact that at high current density, the
heating of the fuel cell should occur more intensely than it does in our model. This heating
should be greater because, when modeling a single channel, the influence of adjacent
channels in the assembly is not taken into account. In our case, the initial temperature of
the fuel has a stronger influence on the temperature distribution than it would in a multi-
channel model. The elevated temperature in the multi-channel model would inevitably
lead to the acceleration of electrochemical reactions and increased current density.

We plan to test this hypothesis in our next study, where the entire multi-channel
assembly will be modeled.

Finally, the overall power output of the SOFC can be calculated from the voltage
and total current. This gives us a measure of the cell’s energy conversion efficiency, en-
abling comparison with experimental data or other models. The results are displayed in
Figures 11 and 12.
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It is noteworthy that the fuel cell demonstrates the highest power output when operat-
ing on hydrogen. A slight decrease in power for methane is attributed to the endothermic
reaction of steam reforming, which leads to a reduction in the temperature of the fuel cell
and a slowdown in electrochemical reactions. At the same time, the power reduction is min-
imal, indicating that the rate of hydrogen generation from steam reforming and water-gas
shift reaction is not less than the consumption of hydrogen due to electrochemical reactions.
Thus, since there is no shortage of hydrogen, the overall power remains close.

Interestingly, syngas proves to be a more efficient fuel than methane, as it facilitates a
faster production of hydrogen through the water-gas shift reaction.

4. Conclusions

This article presents a comprehensive model of a solid oxide fuel cell (SOFC) using the
COMSOL Multiphysics 6.1 software. The model considers key physical phenomena such
as electron and ion transport, gas diffusion, electrochemical reactions, and heat transfer,
and it integrates these processes to accurately simulate the operation of an SOFC.

The model inputs include material properties, operating conditions, and geometric
parameters which are grounded on experimental data and literature. We have incorporated
detailed considerations for the calculation domain, boundary conditions, and multiphysics
interactions, providing an extensive simulation platform.

Carbonaceous Fuels vs. Hydrogen: The fuel cell, when operating on carbonaceous
fuels, exhibited a temperature reduction due to endothermic reactions, contrasting the
behavior observed in hydrogen-fueled cells. The fuel cell delivers higher power when
operating on hydrogen, producing 1340 W/m2 at a current density of 0.25 A/cm2. For
methane, the power output is 1200 W/m2 at a current density of 0.25 A/cm2. For synthesis
gas, the maximum power of 1340 W/m2 is achieved at a current density of 0.3 A/cm2.

Temperature Distribution: Our simulations revealed distinct temperature profiles
within the cell. The central part of the channel in hydrogen-fueled SOFCs was identified as
the high-temperature zone, with a peak temperature that was about 70 K higher than that
of cells fueled by carbon.

Reactants Concentration: The concentration of components in the developed model
displays the anticipated physical behavior of the fuel cell operation. When operating on
carbonaceous fuels, a change in substance concentrations is observed due to reforming
reactions and electrochemical reactions.
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The developed model was compared with a 1-kW industrial prototype operating on
hydrogen and showed good agreement in the volt-ampere characteristic with a deviation
not exceeding 5% for the majority of the operating range.

The work presented here is an important step towards more realistic modeling of
SOFCs. It provides a foundation for future studies to further investigate and optimize
SOFC performance under various conditions. Although the model currently employs
certain assumptions, these can be refined in future studies to provide even more precise
simulations. A clear enhancement to the model would be the incorporation of multi-
channel geometry and accounting for thermal radiation, which we plan to implement in
subsequent studies.
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Nomenclature

SOFC Solid Oxide Fuel Cell
TPB Triple Phase Boundary
LTE Local Thermal Equilibrium
YSZ Yttria-Stabilized Zirconia
LSCF + GDC Lanthanum Strontium Cobalt Ferrite + Gadolinium-Doped Ceria (cath-

ode materials)
LSM cathodes Lanthanum Strontium Manganite cathode
Ni/YSZ Nickel/Yttria-Stabilized Zirconia (anode material)
8YSZ Yttria-Stabilized Zirconia, 8% by mole Yttria
3D-FIB Three-Dimensional Focused Ion Beam
FIB-SEM Focused Ion Beam-Scanning Electron Microscopy
WGS Water Gas Shift
NIST National Institute of Standards and Technology
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