ОСОБЕННОСТИ КОНТРОЛЯ И ИЗМЕРЕНИЯ ИЗОЛЯЦИИ В СИСТЕМЕ ОПЕРАТИВНОГО ПОСТОЯННОГО ТОКА ЭЛЕКТРОСТАНЦИЙ И ПОДСТАНЦИЙ

Э.И. Галиев ФГБОУ ВО «КГЭУ», г. Казань galievemir@mail.ru Науч. рук. канд. техн. наук, доц. Р.Ф. Ярыш

В настоящее время имеется большое разнообразие устройств контроля и измерения изоляции в сети оперативного постоянного тока. Для надежной работы релейной противоаварийной автоматики к данным защиты И предъявляются следующие требования: селективное определение поврежденного возможность работы c традиционной схемой контроля изоляции, предотвращение появления высокого напряжения дискретных на входах микропроцессорных устройств и промежуточных реле.

Цель работы: провести сравнительный анализ технических характеристик и функций устройств контроля изоляции, выпускаемых промышленностью и используемых на энергообъектах. В процессе исследования были использованы следующие методы: метод анализа, метод сравнения. Результаты анализа могут быть использованы для вновь проектируемых систем оперативного постоянного тока.

Ключевые слова: система оперативного постоянного тока, контроль изоляции, сопротивление изоляции, замыкание на землю, поврежденный фидер, релейная защита и противоаварийная автоматика.

Наиболее распространенным видом повреждения в сети оперативного постоянного тока является однополюсное замыкание. Данный вид повреждения не приводит к разрушениям электротехнической аппаратуры. поскольку при возникновении замыкания на землю возникает ток небольшой величины, обусловленный утечкой через изоляцию второго неповрежденного полюса. Однако появление замыкания на землю в другой точке сети способно привести к ложному срабатыванию или отказ устройств релейной защиты и противоаварийной автоматики.

Широко применяется традиционное устройство контроля измерения изоляции (УКИ) [1], выполненное в виде мостовой схемы (см. рисунок). Данная схема не действует при симметричном снижении изоляции на обоих полюсах и позволяет определить поврежденный фидер путем поочередного отключения от шин постоянного тока присоединений.

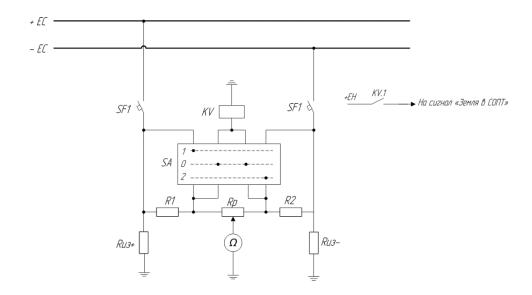


Схема традиционного устройства контроля и измерения изоляции

В настоящее время на щитах постоянного тока электростанций и подстанций используются следующие устройства контроля и измерения изоляции: Isometer (Bender), МикроСРЗ (ООО «НПЦ «Энергоавтоматика»»), Скиф (ООО «Техэлектро СТ»), УКПС Скипетр-КС (ООО «Элекомсервис»), ЭКРА-СКИ (ООО НПП «ЭКРА»), DCtest2 (ООО «Энерготест») Сенсор-СМ (ООО «Магнит») и др., которые способны определить снижение изоляции по отдельным присоединениям. Принцип действия данных УКИ основан на смещении потенциалов положительного и отрицательного полюсов относительно земли и измерение вызванного им тока утечки [2].

Но не все перечисленные устройства имеют возможность совместной работы с традиционным УКИ (Isometer, МикроСРЗ, DCtest2), что является одним из основных условий применения УКИ в СОПТ. Особенностью традиционного УКИ является исключение ложного срабатывания дискретных входов микропроцессорных устройств релейной защиты и автоматики при однополюсном замыкании на землю и работе современных УКИ в режиме измерения изоляции [3].

В таблицу сведены основные характеристики современных УКИ: перекос напряжений полюсов относительно земли в режиме измерения изоляции и поиска поврежденного фидера (ΔU_1 , ΔU_2), величина инжектируемого в сеть тока ($I_{\text{инж}}$), емкость сети (C), диапазоны измерения сопротивления изоляции сети и присоединений ($R_{\text{сети}}$, $R_{\text{прис}}$), время измерения сопротивления (t).

Технические характеристики устройств контроля изоляции

Наименование	Isometer	DCtest2	ЭКРА-	МикроСР	Скипет	Скиф	Сенсор
параметра			СКИ	3	p		-CM
ΔU_1 , B	40	110	30	1	1	60	_
ΔU_2 , B	4220	110	30	_	-	60	_
$I_{\text{инж}}$, мА	150		1	0,52,5	1,5	_	_
С, мкФ	150	-	200	50	300 10000	30	_
$R_{\text{сети}}$, к O м	11000	0250	0100 0	2-1000	09999	_	0300
$R_{ m прис.}$, кОм	_	030	0100	30	0999	05	0300
t, c	4	10250	20	60	40	_	3
Совместимост ь с традиц. УКИ	нет	нет	да	нет	да	нет	да

Таким образом, рассмотренные УКИ потенциально удовлетворяют требованиям ФСК ЕЭС [4]. Из перечисленных характеристик УКИ наиболее важными являются: совместимость совместной работы с традиционным УКИ, способность определять фидеры с симметричным снижением изоляции полюсов относительно земли, селективное определение поврежденного фидера, возможность работы УКИ при различных топологиях сети оперативного тока (две аккумуляторные батареи, два щита постоянного тока).

Источники

- 1. Электротехнический справочник в 4 т. Т 3. Производство, передача и распределении электрической энергии; 8-е изд., исп. и доп. М.: Изд. МЭИ, 2002. 964 с.
- 2. Синегубов А.П. Анализ средств контроля сопротивления изоляции электроэнергетических систем постоянного тока // Известия вузов. Электромеханика. 2015. №1(537). С. 61-65.
- 3. Алимов Ю.Н., Быков К.В., Галкин И.А., Шаварин Н.И. Контроль изоляции в цепях постоянного оперативного постоянного тока электрических станций и подстанций // Релейная защита и автоматизация. 2013. №03. С. 38-45.