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Abstract 

The problem of heat removal in transport is currently urgent. The paper presents a numerical simulation of the airflow of heat 

exchange elements in the form of springs located at the angles 45 and 90, with various porosities of the element packaging: 

0.75  ; 0.8  ; 0.85  ; 0.9  ; 0.95  . Numerical simulation was carried out in the ANSYS Fluent software (v. 19.2) 

for various airflow velocities. Analysis of the influence of heat exchange elements and air velocity parameters on the value of 

energy efficiency was carried out. 
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1. Introduction 

In almost any apparatus, mechanism, production, processes associated with the release or absorption of thermal 

energy occur. Heat exchangers are an integral part of cooling systems, including in transport: for oil cooling in diesel 

and gasoline engines, cooling air entering the cylinders, etc. (Kumar et al., 2018; Soloveva et al., 2020). The operability 

of the transport depends on the quick delivery or removal of heat. 

Analysis of the thermal balance of the engine shows that less than 50% of the energy generated by the combustion 

of the fuel is output as effective work, and the remaining energy disappears in the form of exhaust gases and engine 

coolant. Therefore, heat recovery of the exhaust gases will significantly increase the engine's energy efficiency and 

reduce the total fuel consumption of cars. Automotive thermoelectric exhaust gas generators (AETEG) recover heat 

from exhaust gases (Pandey and Hansdah, 2021). A high-efficiency heat exchanger is required to extract maximum 

energy from the engine's exhaust gases while maintaining a pressure drop within acceptable limits and increasing the 
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potential for power generation by a thermoelectric generator. Shi et al. (2022) provide a modified muffler-heat 

exchanger for combining an exhaust gas heat exchanger and a muffler. The modified noise-suppressed heat exchanger 

provides improved heat transfer and flow characteristics and more uniform temperature distribution on the hot side. 

Thus, the exhaust gas pressure drop is reduced by 8.4% compared to the base structure of the muffling heat exchanger 

by more channels. 

The heat exchanger design shall be oriented towards maximum heat transfer while minimizing pressure loss. The 

use of various methods of intensification of heat exchange in industry and transport has become an important part of 

the design and development of efficient heat exchangers. 

One of the most effective methods for improving heat exchange is using highly porous materials with low weight, 

low density, and high thermal conductivity (Rashidi et al., 2019). Many scientists studied the thermal characteristics 

of porous materials (Kopanidis et al., 2010; Hamadouche et al, 2018; Akar et al., 2017; Alvandifar et al., 2018; 

Soloveva et al., 2021; Soloveva et al., 2021; Soloveva et al., 2021; Soloveva et al., 2019). The effect on the heat 

transfer of factors such as porosity, thickness, and arrangement of the porous insert, the structure, and geometry of the 

cell of the porous structures, the complete or partial coating of the pipes with a porous material has been investigated. 

In the paper (Unger et al., 2020), the authors studied the thermal and flow characteristics of tubular heat exchangers 

with a new rib design for tube inclination angles of 0°, 20°, 30°, and 40° to the horizontal. The performance evaluation 

criterion (Pec) is the largest for the tube with serrated integrated pin fin (SIPF) and the lowest for the tube with circular 

plain fin (CPF). The heat exchanger's greatest heat transfer per unit volume and temperature difference were achieved 

for the tube with circular integrated pin fin (CIPF) at the maximum tube angle. 

We can conclude that methods for improving heat transfer (ribs of various shapes, metal foam) improve the heat 

transfer rate but at the same time create an additional pressure drop that plays a decisive role in the design of an 

effective heat exchanger. 

The results of numerical and experimental studies show that the shape of the heat exchange elements directly affects 

the thermal and dynamic characteristics of the heat exchanger. Round pipes are widely used in heat exchange 

equipment due to the ease of manufacture and withstand high pressure. However, many studies aim to improve 

thermohydraulic characteristics by replacing round pipes with more streamlined ones. A drop-shaped pipe bundle has 

shown superiority over a round one in high thermohydraulic characteristics under the same operating conditions (Deeb, 

2022). The pressure difference in the cam row of tubes is about 92-93% lower than in the round row of pipes, and as 

a result, the thermal-hydraulic characteristics of the cam row of tubes are about 5-6 times higher than in the round row 

of tubes (Bayat et al., 2014). 

Luo and Song (2021) proposed a new twisted annular space formed by two oval tubes twisted against each other 

for a double tube heat exchanger. The results show that a strong secondary flow is created in the new twisted annular 

space , contributing significantly to heat transfer. The maximum Nusselt number (Nu) and the friction coefficient (f) 

of the twisted rings individually are 157% and 118%, respectively, more significant than those of the respective straight 

rings. 

In the article (Dang and Wang, 2021), the authors investigated with numerical methods the mechanisms for 

enhancing convective heat exchange in a pipe with a new kind of spiral coil insert. Under the same operating 

conditions, the heat transfer of the helical coil tube is much higher than that of the smooth pipe. The same conclusion 

was reached in work (Kareem and Shehab, 2021), in which cases of the location of four, six, and eight coil springs, in 

addition to a smooth (without springs) tube body, were modeled inside the tube side of the double-tube heat exchanger. 

Numerical results showed that the overall heat transfer coefficient increased by about 14%, 18.7%, and 21.4% for 

models with 4, 6, and 8 springs, respectively, compared to a smooth tube housing. In a model with 8 springs, a pressure 

drop was about 2.1 times greater than in a smooth tube. 

Thus, we can conclude that after the spring-shaped direction of the heat exchange element, the liquid/air flow begins 

to rotate, the centrifugal force generated by the tangential velocity increases. Centrifugal force pushes the liquid/air in 

the central area of heat exchanger housing to the wall area, and liquid/air in the wall area moves to the central area of 

housing. In this process, longitudinal vortices are formed, and heat transfer characteristics are improved. 

The task of this work is a numerical analysis of the effect of the angle and porosity of the package of heat exchange 

elements in the form of springs on the value of the pressure drop and heat flux. 

The studies can form the basis for developing industrial heat exchangers with higher efficiency and lower costs. 
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Nomenclature 

ε porosity 

Q heat flux 

p pressure drop 

E energy efficiency factor 

v velocity of the air 

2. Materials and Methods 

We considered airflow of heat exchange elements in the form of springs. We created models of heated elements, 

placed at angles 45° and 90°, with different values of the porosity of the package: 0.75  ; 0.8  ; 0.85  ; 0.9 

; 0.95  . The dimensions of each element: wire thickness – 1 mm, spiral diameter – 5 mm, step – 5 mm (Fig. 1). 

Fig. 1. Dimensions of one heat exchange element. 

The computational area is a circular channel with a diameter of 20 mm with heated elements located in it with a 

length of 20 mm, the length of the inlet and outlet nozzles are 20 and 60 mm, respectively. Such dimensions are due 

to the need to ensure the distance of the inlet and outlet boundaries for desired convergence of the numerical 

calculation. Examples of design areas for elements at angles 45 and 90 are shown in Fig. 2 (a, b). 

  
(a) (b) 

Fig. 2. Example of the computational area with heat exchange elements in the form of springs arranged at  

the angle 45 (a) and the angle 90 (b), with porosity of packing of elements 0.8. 

 

Numerical modeling was carried out in the ANSYS Fluent software (v. 19.2). The calculations used an SST model 

of turbulence. The analysis is carried out at different velocity (therefore, for different mass flow rates): 0.01; 0.05; 

0.25; 0.5; 0.75; 1; 1.25 m/s. 
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The number of grid partitioning cells ranges from 8.5 to 30.7 million. We set the following discrepancy values: 

continuity – 110-13; x-velocity, y-velocity, z-velocity, energy, k, omega, intermit, retheta – 110-6. 

At the inlet, we set the air temperature to 293 K, and the temperature on the surface of the element is 373 K. 

Air parameters used in calculations (calculated in Fluent): density – 1.225  kg/m3; dynamic viscosity –  
5

1.7894 10


   kg/(m⸳s); mass flow rates at airflow velocities: 0.01 m/s – 
6

3.84 10G


   kg/s; 0.05 m/s – 
5

1.92 10G


   kg/s; 0.25 m/s – 
5

9.60 10G


   kg/s; 0.5 m/s – 
4

1.92 10G


   kg/s; 0.75 m/s – 
4

2.88 10G


   

kg/s; 1 m/s – 
4

3.84 10G


   kg/s; 1.25 m/s – 
4

4.80 10G


   kg/s. 

The purpose of this work is to determine the effect of the angle of location and porosity of the package of heat 

exchange elements on the value of heat flux and energy efficiency factor. 

Energy efficiency factor is calculated by formula (Liu et al., 2020): 

F

Q
E

P
 ,   (1) 

where Q  is the heat flux from the feature surface, W; P  is the power spent on coolant (air) pumping, W: 

V

G
P G p p


         

where VG  is the volumetric airflow rate, m3/s; p  is the pressure drop, Pa; G  is the mass airflow rate, kg/s;   is the 

air density, kg/m3. 

3. Results 

Figure 3 shows graphs of changes in heat flux depending on the air velocity. When the porosity of the package of 

elements is equal, the heat flux from the surface of the springs is located at the angle 45, higher than from the surface 

of the springs located at the angle 90, except in the following cases: 1 – at porosity 0.75   at the velocity of air of 

0.05 m/s to the springs placed at an angle 90 there correspond values of a heat flux 0.23% higher, than to the springs 

placed at the angle 45; 2 – at porosity 0.8   at the velocity of air of 0.01 m/s – is 0.46% higher; 3 – at porosity 

0.9   at the velocity of air of 0.01 m/s – is 1.80% higher; 4 – at porosity 0.95   at the velocity of air of 0.01 m/s 

– is 0.71% higher. The higher porosity, the greater the increase in the heat flux value of the springs located at an angle 

of 45 relative to the springs located at an angle of 90. 

Figure 4 shows the pressure drop curves depending on the velocity at the porosity of the packing elements: 0.75 

; 0.8  ; 0.85  ; 0.9  ; 0.95  . The graphs show that the elements placed at an angle of 90, correspond to 

the smallest values of the pressure drop at all design velocities and values of the porosity of the package of elements, 

except for the velocity of 0.01 m/s at porosity 0.8   and velocities 0.01 and 0.05 m/s at porosity 0.85  . In these 

cases, springs placed at an angle of 45 correspond to a pressure drop of less than 4.96; 9.45 and 26.19%, respectively, 

than springs placed at an angle of 90. 
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Fig. 3. Change of heat flux depending on air velocity for element packing porosities: 0.75  ; 0.8  ; 0.85  ; 0.9  ; 0.95  . 
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Fig. 4. Change of pressure drop depending on air velocity for element packing porosities: 0.75  ; 0.8  ; 0.85  ; 0.9  ; 0.95  . 

 

 

 



 Author name / Transportation Research Procedia 00 (2019) 000–000 6 

Studies of the change in energy efficiency factor (1) depending on the velocity (Fig. 5) showed that at the porosity 

of the packages of elements  0.75  ; 0.9   and 0.95   the greatest values at all rated velocities show the 

springs placed at an angle 90. With the porosity of the packing of elements 0.8   at a velocity of 0.01 m/s, the 

highest energy efficiency value corresponds to springs placed at an angle of 45. This is due to the lower value of 

pressure drop at given velocity for springs located at an angle of 45. With porosity 0.85   at velocities of 0.01 and 

0.05 m/s, the highest energy efficiency value also corresponds to springs placed at an angle of 45. The reasons for 

this are a higher heat flux value and a lower pressure drop value at these velocities for springs placed at an angle of 

45. 
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Fig. 5. Change of energy efficiency factor depending on air velocity for element packing porosities: 0.75  ; 0.8  ; 0.85  ; 0.9  ; 

0.95  . 

Figure 6 (a-e) shows an increase in energy efficiency when using springs placed at an angle of 90 relative to 

springs placed at an angle of 45. 
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(c) (d) 
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(e) 

Fig. 6. Change of energy efficiency factor depending on air velocity in percent relative to springs placed at angle 45 for porosities of elements 

packing: (a) 0.75  ; (b) 0.8  ; (c) 0.85  ; (d) 0.9  ; (e) 0.95  . 

4. Conclusion 

In the presented work, we studied the airflow of heat exchange elements in the form of springs arranged at angles 

45 and 90 at different values of porosities of element packaging: 0.75  ; 0.8  ; 0.85  ; 0.9  ; 0.95  . 

We found that elements placed at an angle of 45 in most cases correspond to the highest value of heat flux at the 

analyzed porosities and flow velocities due to greater contact with the air surface. Elements placed at an angle of 90 

correspond to the lowest values of the pressure drop at all design velocities and values of the porosity of the package 

of elements, except for the velocity of 0.01 m/s at porosity 0.8   and velocities of 0.01 and 0.05 m/s at porosity 

0.85  . When the porosity of the packages of elements 0.75  ; 0.9  , and 0.95  , the greatest values of 

energy efficiency factor at all rated velocities show the springs placed at an angle 90. With the porosity of the packing 

of elements 0.8   at the velocity of 0.01 m/s, the highest energy efficiency value corresponds to springs placed at 

an angle of 45. With a porosity 0.85   at velocities of 0.01 and 0.05 m/s, the highest energy efficiency value also 

corresponds to springs placed at an angle of 45. 
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