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Abstract. The article describes a method for determining the dependence of the Lamb waves phase 

velocity on the technical condition of housing and utilities pipelines, using the example of thin two-layer 

segments. Variations in the thickness of the considered pipeline affect the propagation parameters of the 

Lamb wave mode. 

Introduction 

During long-term operation, pipelines are exposed to 

internal and external influences. Because of them, 

material destruction occurs, corrosion appears and other 

types of defects develop. The use of modern materials 

and technologies for the manufacture and laying of 

pipelines does not exclude the possibility of various 

deformations [1]. 

It is very effective to use metallic and non-metallic 

coatings to ensure the wear resistance and durability of 

steel objects of thermal power plants. But this requires 

determining and evaluating the quality and area of 

adhesion of materials to the base. 

Monitoring by non-destructive testing methods remains 

relevant to solve such problems. This helps to reduce the 

occurrence of undesirable consequences from the 

degradation of pipeline materials developing over time. 

Traditional non-destructive testing methods have several 

disadvantages. They are associated with the limitation of 

the application scope to a certain set of materials, and 

also have a weak selectivity in monitoring the location of 

pipelines [2]. It is proposed to consider a new approach 

to determine the technical condition of pipelines for 

housing and utilities. It is based on the propagation of 

Lamb waves in the considered segments. 

Lamb waves propagation in a segment 

Consider a segment with a thickness of 2d, in which the 

origin is taken as Y. In this case, the wave will propagate 

along the X axis, and the normal will be directed along 

the Z axis (Fig.1). 

We begin our investigation of the pipelines vibroacoustic 

parameters with the equation below. It describes the 

propagation of elastic waves in segments homogeneous 

in structure through the scalar φl and the vector potential 

ψl, which, according to [3], has the form: 

 Δφl =kl
2φl=0  (1) 

 Δψl =kt
2ψl=0  (2) 

Fig. 1 – problem geometry 

The wave numbers of longitudinal and transverse waves 

are equal, respectively 

 kl=2πν[ρ/(λl+2μ)]1/2  (3) 

 kt=2πf(ρ/μ)1/2  (4) 

where ρ is the density of the medium; λl and 2µ are 

elastic constants. 

Acoustic waves are characterized by geometric 

dispersion in contrast to surface waves. Since d is 

constant over the entire length of the segment, and the 

wavelength is λ=2πC/ω=2π/k, it becomes obvious that 

the ratio between the wavelength and the segment 

thickness depends on ω. Here ω – is the cyclic 

frequency, and C – is the acoustic wave speed . 

Therefore, there is dispersion for all waves in the 

segment [4]. The connection of scalar and vector 
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potentials with displacement components along the X 

and Z axes are given in [3]. The stress tensor 

components σij on the segment planes z=±d/2 should 

tend to zero. Based on this, we transform the formulas 

(1) and (2):  

                                  φ=ASchqzeikx+BAshqzeikx  (5) 

                                  ψ=DSshszeikx+CAchszeikx  (6) 

where q=(k2-kl
2)1/2; s=(k2-kt

2)1/2; AS, BA, CA, DS are the 

arbitrary constants; k – the Lamb wave number. In this 

case, the multiplier e-iωt can be neglected in the 

calculations. 

Based on the equations obtained in [3], we note that 

these groups of waves describe the asymmetric and 

symmetric motion of waves in the plane Z = 0. 

Analysis of asymmetric and symmetric waves in the 

segment shows that they are characterized by a strong 

speed dispersion. The waves propagation speed CL 

depends on the segment thickness, the elastic properties 

of the material and the wave frequency ω. From these 

considerations, we come to the conclusion that for a 

segment thickness d, the propagation speed of the fastest 

symmetric mode S0 can be written as:  

                                  CS0= {E/[ρ(1-ℵ 2)]}1/2  (7) 

where E is the Young's modulus; ℵ  is the Poisson's ratio, 

which for a wide class of metals is taken in the range 

from 0.26 to 0.35. 

If we know the dispersion curves of Lamb waves phase 

velocities, then we can calculate the displacements and 

stresses in them [3]. The longitudinal US0 and transverse 

WS0 displacements of the wave on the segment are as 

follows:  

             US0=Akt[(kS
2-SS

2)sin(ksx-ωt)]/[ktd(kS
2+SS

2)]  (8) 

                                  WS0= US0qszctg(ksx-ωt)  (9) 

In accordance with the given equations, longitudinal 

waves are dominated by displacements along the X axis 

with the same amplitude for all points of the segment. 

The displacement in the transverse direction is much less 

than the longitudinal displacement due to the Poisson 

effect [5]. 

Theoretical analysis 

Let us consider the situation of wave propagation in a 

two-layer pipe, in which both layers are made of 

different materials. We accept the total thickness of the 

base and coating less than 1 mm. We will consider a part 

of the pipe as a thin segment. The base is made of alloy 

steel with ℵ=0,28, and the outer monolayer 

polyethylene coating has ℵ=0,42.  

Materials differ in elastic properties from each other, 

therefore, the following condition is fulfilled: 

                                 {(kt)1d1,(kt)2d2}≪1                      (10) 

 

 

The main characteristics of the segment materials are 

shown in the table: 

Table 1. Main characteristics of materials 

 Е ℵ  ρ d 

 MPa 
 kg/m3 µm 

Monolayer 

polyethylene 

coating 

 

770 

 

0.42 

  

9,65 х102 

 

1 

 

2 

 

3 

 

4 

Alloy steel 
 2,2х105 0.28  7,85х104 22 36 45 51 

If condition (10) is satisfied and there is a defect, for 

example, there is no adhesion between the layers, then 

the S0-mode will propagate in the steel base of the 

segment and in the coating separately. Its speed (CS0)1 

and (CS0)2, will be determined by formula (7), for the 

main and outer layers, respectively. 

We also assume that the rigid adhesion condition of the 

contact surfaces of the segment materials is fulfilled:  

                                  (σij)1=(σij)2 and (US0)1=(US0)2; 

                                 (WS0)1=(WS0)2  when z=0           (11) 

Then we summarize the parameters for both layers:  

                                  E=1/(E1
(-1)d1

`+E2
(-1) d2

`);  

                                  ℵ=ℵ 1 d1
`+ℵ 2d2

`; ρ=ρ1d1
`+ρ2d2

`,  

(12) 

where d1
`= d1/d; d2

`= d2/d. 

Since d12=d1/d2 is in the range from 0 to 1, then formula 

(7) will look like:  

         CS0≈{1-[d1
`(E21+ρ12-2)]/2}(1+ℵ 2

2/2)(E2/ρ2)1/2     

(13) 

Thus, at ρ2E2≠ρ1E1, a change in the segment thickness is 

observed [5]. 

For the numerical calculation of the theoretical analysis, 

we will solve the problem where we assume that an 

emitter with an operating frequency is located on the 

basis of the segment f=1MHz. Two piezoelectric sensors 

are located on the surface at an equal distance L=80mm, 

which register the transmitted signal from the emitter. 

The propagation time of a vibroacoustic signal between 

two sensors t=0,1s makes it possible to determine the 

speed of the investigated mode by the formula  

CS0 *=L/t12. 

According to the formula (13), d1
` will be equal to:  

         d1
`≈(CS0

*/{[1+(ℵ 2
2/2)](E2/ρ2)1/2+1}/(E21+ρ12-2  (14) 

The calculated wave propagation data in a steel segment 

with a monolayer polyethylene coating is a 

monotonically decreasing curve, where ∆CS0=CS0-CS0
*. 

The dependence of the propagation speed change of the 

fastest symmetric mode S0 on the segment thickness is 

shown in Fig. 2. 
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Fig. 2 – Dependence of the wave propagation speed on the 

segment thickness 

Conclusion 

A numerical-analytical method for calculating the Lamb 

wave mode propagation in a thin two-layer segment is 

used. The calculation steps are based on the method for 

determining the propagation speed of the fastest 

symmetric mode S0. Using the above formulas, the 

dependence of the wave propagation speed on the 

segment thickness is shown. Developing this technique, 

it is possible to record the relative changes in the utility 

pipelines thickness. This will help to identify changes in 

the physical properties of the material or a defect 

presence. 
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