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Abstract. The research work presents the results of mathematical modeling of the 

ethylbenzene dehydrogenation process to styrene in a fixed catalyst bed. Calculations 

for the different length granule packaging are carried out. Calculated values of the 

reaction product yield (styrene) are in a wide range of gas velocities. There are 

significant differences in the yield of the product at high gas velocities for catalyst 

granules of different shapes. Of the considered catalyst granules forms, we got the best 

yield efficiency by the use of granules, which provide maximum surface area and 

porosity in the fixed bed catalyst. 

1.  Introduction 

Catalytic processes with a fixed bed widely use in the chemical industry. Despite numerous 

developments in the field of application of structured packings catalyst [1], the random arrangement of 

granules is of particular interest, since such an arrangement presence in modern reactors. Accounting 

for the heterogeneity of the bed structure based on numerical modeling and experimental studies of 

chemical processes in cylindrical reactors was carried out in [2, 3]. Impressive results were obtained 

based on the averaged model and semi-empirical correlations.  

Expanding the classical approach using the concepts of medium-radial porosity and medium-radial 

velocity profiles, the authors of [4-7] took into account the strong influence of the bed structural 

properties on heat and mass transfer as a whole. However, the use of such an average model may be 

incorrect if there are only a few granules in the reactor’s cross section. For such cases, axial symmetry 

is not fulfilled, and it is impossible to describe local phenomena by the averaged model. Detailed 

research is possible using 3D-model [8]. The authors of [9] take into account the local features of the 

full three-dimensional structure of the fixed bed without simplification under the assumption of 

symmetry. 

The primary requirement for conducting detailed numerical modeling is the creation of the porous 

structure geometry consisting of randomly spaced granules. To create a numerical model, use X-ray 

computed tomography data or magnetic resonance imaging methods as one of the suitable methods for 

creating a raster three-dimensional geometry image. These methods make it possible to digitize the 

geometry of existing samples, but do not allow the creation of environments with predetermined 
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parameters of a porous medium. Creating the porous medium geometry based on the Monte Carlo 

method, or the method of a separate element (“distinct element method” - DEM) allows to create a 

geometry with predetermined properties (size, granule shape, porosity), and, if necessary, print out 

objects in 3D the printer. 

Detailed modeling has shown that the use of averaged flow models in porous media is often 

incorrect. To determine the model correctness in the case of direct numerical simulation, conduct 

experimental studies of the gas movement inside a porous medium created by a computer model using 

three-dimensional printing. 

Optimization of a fixed catalyst bed chemical reactors is often carried out by numerical simulation 

using computational fluid dynamics (CFD) since in most cases hydrodynamics affect the course of a 

chemical reaction [11-13]. CFD modeling is based on the fundamental conservation laws of mass, 

momentum, energy and does not depend on the types of reactors and their scales, which allows us to 

consider multiscale phenomena occurring in reactors [10-12, 14]. 

In [15, 16], a detailed numerical study of the pressure drop during the gas flow through spherical 

granules randomly based on CFD modeling was performed. They compared the results obtained for 

different geometries and flow rates with the experimentally obtained dependencies. Finally, velocity 

and pressure fields calculated from CFD simulations are further used to interpret the differences 

between CFDs and empirical dependencies to determine the pressure drop value. 

In this work, we constructed a mathematical model of the ethylbenzene dehydrogenation reaction 

to styrene in a fixed bed catalyst. The granular bed bases on the DEM. A granule model represents 

cylinders of different sizes. A comparative analysis of the catalyst granules shape and size influence 

on the reaction product yield is carried out by numerical simulation. The calculations were carried out 

in a wide gas velocity range, allowing us to estimate the product yield, both for laboratory installations 

and industrial reactors. 

2.  Mathematical models 

2.1.  Mathematical model of packing fixed catalyst bed granules 

For the Eulerian-Eulerian approach, we write down the conservation laws for mass, momentum, and 

The main methods of creating geometry with elements randomly located in space are the Monte Carlo 

method and the DEM, which is actively used to model bulk media with non-spherical granules. In the 

case of the fixed bed geometry creation, the use of the Monte Carlo method may be incorrect, since it 

does not take into account the additional forces acting on the granule, they must be connected 

separately. The DEM is a numerical method for solving problems that require a description of the bulk 

media mechanics. Presented in [17], DEM was developed to analyze the problems of rock movement 

using deformable polygonal blocks and then applied to soils [18]. 

We considered the dynamic process in which the flow velocity depends on the physical properties 

of a discrete system, and assumed that the speed and acceleration are constant in each time step. The 

solution scheme is identical to the scheme used by the explicit finite difference method. The DEM 

based on the idea that the selected time step can be so small that during a single time step, the 

disturbances cannot spread farther from any particle than its immediate neighbors. Then the forces 

acting on any particle at any time step are determined solely by its interaction with the particles with 

which it contacts. Since the rate at which a disturbance can propagate is a function of the discrete 

system physical properties, it is possible to calculate the time step to satisfy this constraint. The use of 

an explicit (as opposed to implicit) numerical scheme allows one to simulate the nonlinear interaction 

of a large number of particles without excessive requirements for RAM, as well as an iterative 

procedure. 

The calculations performed by the DEM method alternate with the application of Newton's second 

law to particles and the law of the displacement force at the contact area. Newton's second law is used 

to determine the motion of each particle arising from the contact and volume forces acting on it, while 
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the law of displacement force is used to update the contact forces arising from the relative motion in 

each contact area. In this case, there is a constant update of the position of the walls coordinate. 

At the beginning of each time step, the set of contacts updates relative to the known positions of the 

particles and walls. Then, for each contact, the force law of displacement is applied to update the 

contact forces based on the relative motion between two objects in the contact and the contact model. 

Then the motion law is applied to each particle in order to update its speed and position based on the 

resultant force and moment arising from the contact forces and other forces acting on the particle. 

Also, the position of the walls is updated depending on the specified velocity of the walls. 

Fig. 1 shows a constructing example package of cylindrical catalyst granules for a model of a 

laboratory reactor 3 cm in diameter. The bed height is 4.6 cm, the granule diameter is 3 mm, and the 

granule length is 6 mm. After falling into the flask of the reactor, the granules are in a random order. 

This approach imitates well the poured catalyst granules in a laboratory reactor, as well as in a large-

scale industrial reactor. 

 

 
Figure 1. Packing model of cylindrical granules 

2.2.  Mathematical model for calculating the dynamics of the gas movement and heat and mass 

transfer processes 

The described mathematical problem was solved by the finite volume method with a grid partition of 

the considered reactor region. For a multicomponent gas phase, the conservation laws of mass, 

momentum, and energy are satisfied. In the study of this problem, the following equations we solved. 

The mass conservation equation for the gas phase: 

   0,
g

v
t





 


  (1) 

where   is gas density, v  is gas velocity. 
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The momentum conservation equation for the gas phase 

   ,
v

vv p g
t


  


      


  (2) 

where p  is pressure,   is gas phase stress tensor. In equation (2), the stress tensor 

  
2

,
3

Tv v vI          (3) 

where   is shear viscosity, I  is unit tensor. 

The energy conservation equation for the gas phase 

   :
h p

vh J v
t t


 

 
      

 
  (4) 

where h  is gas enthalpy, J  is diffusion flux, which arises due to gradients of concentration and 

temperature. 

We divided the entire computing area of the reactor into finite elements of a triangular shape, the 

dimensions of which are sufficient to determine the characteristic factors of the phenomenon under 

study. In the calculations carried out in this paper, the typical number of finite elements ranged from 

35,000,000 to 40,000,000 elements. Fig. 2 shows an example of a grid partition of the computational 

domain under consideration. 

 

 
Figure 2. A grid partition example of a computational domain 

 

To numerically solve the problem of hydrodynamics and heat and mass transfer in a catalyst fixed 

bed reactor for the ethylbenzene dehydrogenation to styrene, we need to specify conditions at the 

boundaries of the considered region. We set the boundary conditions following the mechanisms of 

operation of the calculated laboratory reactor and the solver used at all boundaries of the 

computational domain. So, we set the impenetrable wall condition on all impermeable surfaces, and a 

temperature equal to the temperature of the reactor heated walls on the outer wall of the area under 

consideration. At the site of the gas flow in the model of the reactor were set conditions for the gas 

mass flow. At the site in the reactor model, the conditions for external pressure outside the area under 

consideration we set for the gas outlet. 

The considered gas phase flow is considered a multicomponent ideal incompressible gas consisting 

of raw material (ethylbenzene), water vapor, and the reaction products (styrene and hydrogen). 
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2.3.  Mathematical model of the chemical reaction kinetics of the ethylbenzene dehydrogenation to 

styrene 

The primary reaction of this process is the ethylbenzene dehydrogenation to styrene. Under the 

dehydrogenation understand the chemical processes associated with the elimination of hydrogen atoms 

from organic compounds. Dehydrogenation reactions are reversible, strongly endothermic, occurring 

with an increase in volume due to hydrogen evolution. 

 8 10 8 8 2C H C H +H Q.    (5) 

For surface reactions, the rate of adsorption and desorption is determined both by chemical kinetics 

and by diffusion to and from the surface. 

Consider the theoretical information from chemical kinetics used to build the model. The chemical 

reaction rate is usually known as the change in the amount of a substance reacting or resulting from a 

reaction per unit of time per unit volume.  

 ,i i j j

i j

v B u A    (6) 

 
1

,  ,
dn dc

w V const
V dt dt

     (7) 

where n  is the number of moles, c  is volume-mole or volume-molecular concentration of a 

substance. 

In the case when the stoichiometric equation (6) of a simple reaction of type (7) is known, to 

determine the reaction rate should be in the form uniquely: 

 
'

1 1
,  ,i k

i k

dn dn
w V const

V dt u V dt
     (8) 

where i  and ku  refer to the stoichiometric coefficients of the starting materials and reaction products, 

respectively. 

The central postulate of chemical kinetics says: "The rate of chemical reaction (with constant 

volume) is proportional to the product of current concentrations of the initial substances, raised to 

some degree."  

 
1 1

.i
j pi

i

ii j

dcdc
w k c

v dt u dt
       (9) 

The order and the molecular reaction. The numbers ip  in equation (10) are called reaction orders 

by substance, and their sum is called reaction order.  

 .i

i

p n   (10) 

For reactions of type (6) the molecular is 

 .i

i

v v   (11) 

In the case of elementary (one-step) reactions, the molarity coincides with its order. Thus, the 

molarity of the considered reaction (5) and its order are equal to unity: 1v   and 1n  . 

The general dependence of the rate constant on temperature gives the Arrhenius equation: 

 
2

ln
,aEd k

dT RT
   (12) 

where aE  is activation energy. 

 ln ,aE
k const

RT
     (13) 

 

 exp .aE
k A

RT

 
  

 
  (14) 
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3.  Results 

Consider the model of a laboratory reactor for a granular catalyst bed for the ethylbenzene 

dehydrogenation to styrene. For comparison, we construct two models of cylindrical granule packages: 

6 mm in length and 9 mm in length. The granule diameter is 3 mm. The granules are poured into a 

cylindrical flask with a diameter of 2.8 cm and are 4.6 cm in height. At the same time, longer granules 

can form larger free areas in which gas will move without contact with the catalyst surface. 

Under laboratory conditions on small-sized reactors in the reaction of ethylbenzene 

dehydrogenation to styrene, the average velocity of the raw materials mixture and water vapor can be 

in the order of 0.1 m/s. In this case, for example, in industrial radial-type reactors, the average gas 

velocity can be in the order of 10 m/s. Therefore, we will perform calculations for a wide range of gas 

velocities. 

Verification of the mathematical model was carried out for laboratory experiments with an average 

gas velocity of about 0.1 m/s. The product yield on the experimental setup ranged from 66-70%. The 

results of numerical calculations are presented in fig. 3. 

 
Figure 3. The calculated yield of the product depending on the gas velocity for cylindrical pellets 

 

There is a significant decrease in product yield at high gas velocities, and this is due to the decrease 

in the time of gas contact with the catalyst granule surface. The use of larger granules allows for a 

lower yield of the dehydrogenation reaction product. Thus, the granule size and porosity of the catalyst 

bed can have a significant impact on the yield of the reaction product. 

Fig. 4 shows the fields of mass fraction of the reaction product (styrene) for calculations at a gas 

velocity: (a) - 0.1 m/s, (b) - 15 m/s. 

At a higher gas velocity due to the short time of gas contact with the surface, the mass fraction of 

the reaction product decreases significantly with increasing gas velocity. 
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Figure 4. Mass content of styrene in the reactor near the 

cylindrical catalyst granules. 

Acknowledgements 

The reported research was funded by Russian Foundation for Basic Research and the government of 

the Republic of Tatarstan of the Russian Federation, grant № 18-41-160005. 

References 

[1] Calis H P A, Nijenhuis J P B C, Paikert B C, Dautzenberg F M and Van Den Bleek C M 2001 

Chem. Eng. Sci. 56 (4) 1713 

[2] Daszkowski T and Eigenberger G 1992 Chem. Eng. Sci. 47 (9-11) 2245 

[3] Papageorgiou J N and Froment G F 1995 Chem. Eng. Sci. 50 (19) 3043 

[4] Küfner R and Hofmann H 1990 Chem. Eng. Sci. 45 (8) 2141 

[5] Bey O and Eigenberger G 1997 Chem. Eng. Sci. 52 (8) 1365 

[6] Giese M, Rottschäfer K and Vortmeyer D 1998 AIChE J. 44 (2) 484 

[7] Winterberg M, Tsotsas E, Krischke A and Vortmeyer D 2000 Chem. Eng. Sci. 55 (5) 967 

[8] Dixon A G and Nijemeisland M 2001 Ind. Eng. Chem. Res. 40 (23) 5246 

[9] Freund H, Zeiser T, Huber F, Klemm E, Brenner G, Durst F and Emig G 2003 Chem. Eng. Sci. 

58 (3-6) 903 

[10] Gunjal P R and Ranade V V 2007 Chem. Eng. Sci. 62 (18-20) 5512 

[11] Gunjal P R, Kashid M N, Ranade V V and Chaudhari R V 2005 Ind. Eng. Chem. Res. 44 (16) 

6278 

[12] Gunjal P R, Ranade V V and Chaudhari R V 2005 AIChE J. 51 (2) 365 

[13] Jiang Y, Khadilkar M R, Al-Dahhan M H and Dudukovic M P 2001 Cat. Today. 66 (2-4) 209 

[14] Ranade V V 2001 Computational Flow Modeling for Chemical Reactor  Engineering 

(Academic Press, London) 

[15] Pavlišič A, Pohar A and Likozar B 2018 Powder Technol. 328 130 

[16] Della Torre A, Montenegro G, Onorati A and Tabor G 2015 Energy Procedia. 81 836 

[17] Cundall P A 1971 The measurement and analysis of accelerations in rock slopes (Ph.D. thesis, 

Imperial College, London) 

[18] Cundall P A and Strack O D L 1979 Geotechnique. 29 (1) 47 


