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Abstract. In this work, we performed experimental and numerical simulation of gas flow in 
the model of the open cell foam filter. We investigated the relationship between the porosity of 
the medium ε , and the parameter Po  characterizing the number of pores per inch. We obtain 
a porous medium from the inverse matrix of the computational model made on a 3D printer. 
The calculation results of the pressure drop depending on the average filtration rate correlate 
well with the experimental data. Particle trajectories make it possible to determine the particle 
deposition efficiency in a porous layer for three values of the porosity of the medium 0.6ε = , 

0.7ε =  and 0.8ε = . The deposition efficiency in the case of porosity 0.8ε =  correlate well 
with the data obtained by the semi-empirical formula of the authors of [1], however, for the 
other two values of the porous medium, the efficiency curves differ significantly, so the 
dependence was obtained for a material with high porosity. We define the filter quality 
parameter by the ratio of the particle deposition efficiency to the pressure drop value in the 
porous layer. 

1.  Introduction 
Open cell foams have a very diverse use [2-10]. They are used as thermal insulation [11, 12], in heat 
exchange amplifiers in electrical systems, where the radiator is extremely important [13, 14], as 
receivers of solar radiation [15, 16], and as open cell foam matrix catalyst using instead of industrial 
catalysts [17]. Also, the open cell foam material is used as an active filter for aerosol particles due to 
the low drag coefficient and developed surface [18-21]. 

For the gas flow numerical simulation in the porous medium, it is necessary to make a geometric 
model that will correspond to the real structure of the material. The authors of [22-24] use a porous 
medium from simplified cells with an ordered structure. However, the real porous medium structure is 
not orderly, and it provides significant changes in the flow hydrodynamics. A model that represents 
the actual structure can be obtained using microtomography technology [15, 16]. The model obtained 
by the microtomography of the medium further requires long and laborious processing, cleaning from 
«suspended in space» elements that are not related to the general structure. The disadvantage of this 
method is that the resulting geometry requires lengthy and time-consuming processing. Modern 
technologies make it possible to print material on a 3D printer with specified parameters of a porous 
medium. Due to the complex shape of the porous media geometry, the majority of published works 
based on experimental data [25, 26]. 



 
 
 
 
 
 

The use of simplified models of the flow in porous structures leads to significant differences in 
experimental and calculated data [27-30]. There are experimental studies of heat and mass transfer in a 
porous medium [16, 23, 25-29]. 

The authors of the work [31] compare the heat exchanger performance with the open cell foam 
material and with finned tubes. The results show that the open cell foam material not only intensifies 
the heat transfer but at the same time reduces the weight and size of the heat exchanger. The work [32] 
presents the results of heat transfer measuring inside rectangular aluminum blocks, with a constant 
supply of heat to the porous medium. The authors propose an analytical model for heat exchange in a 
metallic porous medium. In [33], the authors investigated the effect of the open cell foam material 
thickness on the heat transfer properties and pressure drop in the vertical channel.   

Numerical simulation of processes in porous media can overcome all experimental problems and 
accurately take into account the smallest geometric details. Modern computational capabilities make it 
possible to create a detailed geometry of the computational area, set the material properties and 
boundary conditions.  

Previously, researchers based their numerical studies of porous media mainly on the averaged 
volume method and the Darcy law. In [34], the authors made a detailed numerical simulation of the 
flow in a metallic open cell foam material. Detailed numerical simulation is the most accurate method 
for studying flow in porous filters, because it is inapplicable to many averaged flow models in porous 
media due to a complex porous material structure.  

The purpose of this work is to determine the pressure drop value in the open cell foam material, 
which is a model of an aerosol filter, and the particle efficiency deposition for three values of medium 
porosity. 

2.  Problem formulation 
Let us make experimental studies and numerical simulation of the air flow in open cell foam material 
with different medium porosity ε  (the ratio of the pore volume in the total body volume) and a fixed 
pore size 4cd =  mm. The computational model of an open cell foam filter is a set of intersecting 
spheres randomly arranged in space. (Fig. 1). 

 

 
Figure 1. The porous medium computational model for cells diameter 4cd =  mm. 



 
 
 
 
 
 

We made calculations in the ANSYS Fluent software package (v. 19.0) for the viscous 
incompressible gas model by solving the Navier-Stokes equations using the finite volume method. 
There are two main approaches to describe gas flow in a porous medium. The first approach is based 
on the averaged flow models that include an adjustment for the medium porosity (and permeability), 
such as, the well-known Darcy model. The second approach involves the calculation of the flow in a 
porous medium based on the Navier-Stokes equations, taking into account the geometry details. This 
approach is the most accurate because it takes into account the pores shape, pore location, fiber 
diameter, and other parameters. In this case, taking into account the resistance of the medium occurs 
due to the peculiarities of the internal structure. Direct numerical simulation for a detailed picture of 
the flow, reflecting the vortices in each pore, was carried out using a grid of 40 million cells. Figure 2 
shows the grid quality. 

 

 
Figure 2. Fragment of the grid partitioning of the computational domain. 

 
We set the condition "mass flow inlet" at the left border of the computational area corresponding to 

the flow inlet, and the condition "pressure outlet" at the right border. Also, the remaining boundaries 
were defined as "wall" automatically. We performed calculations for three values of medium porosity 

0.6ε = , 0.7ε =  and 0.8ε = . 

3.  Determination of the parameter Po (porosity) 
We selected five cross sections of the porous layer: 0 cm, 1 cm, 2 cm, 3 cm, and 4 cm from the 
beginning of the porous section (Table 1) to determine the parameter  (counting the average number of 
pores per inch). The cross-section pictures of the porous medium make it possible to determine the 
average porosity parameter.  

For medium porosity 0.6ε = , 0.7ε = , 0.8ε = porosity parameters are 6Po = , 7Po = , 8Po =  
respectively. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

Table1. Pictures of the cross-section of the open cell foam model. 

 1 0l =  cm 2 1l = cm 3 2l = cm 4 3l = cm 5 4l = cm 

0.6ε =
 

     

0.7ε =
 

     

0.8ε =
 

     

4.  Results of experiment and numerical simulation 
It is necessary to make sure that the model is correct in order to accurate calculation of the particle 
deposition efficiency. Experimental samples completely represent the computational model geometry 
taking into account the inverse structure (the numerical calculation is in the inner porous space). In the 
experiment, air is injected into the porous medium by a compressor, and the pressure drop is measured 
by «Testo 510 manometer», the flow rate is measured by «Testo 450 hot-wire anemometer». The 
pressure drop values in the porous region are determined depending on the average filtration rate. The 
results of experimental studies and numerical simulations correlate well. The insignificant difference 
in the study results at high flow velocities is related to developed turbulent flow and difficulty in 
«trapping» vortices in numerical calculation. It is possible that the grid partition of 40 million cells is 
not enough for such a complex area, but computational capabilities limit the increase of the grid 
elements number. The average filtration rate of gas suspension in technical devices varies from 1 to 5 
m/s, the deviation in the results of numerical and experimental studies can be acceptable, and at speeds 
up to 5 m/s, there is a complete agreement of the obtained data. 

The particle deposition efficiency is the primary parameter in a filter quality. Also, it is a ratio of 
the settled particles number to the started particles number: 
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Figure 3. The pressure drop dependence on the flow rate for three values 
of the medium porosity: lines with symbols – experimental data, lines 
without symbols – calculation results. 

 
Helmann [1] derived a semi-empirical dependence for evaluating of the particle deposition 

efficiency of in diffusion neglect.  
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where t  is the filter thickness, fd  is the fiber diameter of the porous medium, St  is Stokes number, 

GN  is the parameter of gravitational settling. 
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pd  is the particle diameter, 0u  is the gas velocity, µ  is viscosity. 
1.2160.009633fd Po−= ⋅   

The parameters t  and fd  are given in millimeters. 
The correctness confirmation of the model made it possible to calculate the particle deposition 

efficiency in the gas flow velocity 
According to the numerical calculation and the semi-empirical Hellman formula, the efficiency 

curves of particle deposition correlate well for the case of maximum porosity 0.8ε = , however, the 
efficiency curves diverge for the case of lower porosity because the Hellman formula works only in a 
certain range of environmental parameters in the performed experiment. The starting particles location 
is also significant. For a medium with lower porosity, a substantial area is formed in the cross-section, 
comparable to the pore area on which particles additionally deposited if particles start far from the 
pores of the filtering material. These two factors explain the discrepancy between the experimental 
data and the numerical calculation results for the values of medium porosity 0.6ε =  and 0.7ε = . 
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Figure 4. The dependence of the particle deposition efficiency on the 
Stokes number, obtained by numerical calculations and experimental 
studies. 

 

5.  Conclusion 
In this work, we investigate the dependence of the medium porosity, which uses the mechanics of 
porous media and the porosity parameter Po used in industry. We carried out numerical calculations 
and experimental studies of the gas flow in a tube containing a porous layer, which is a filter model for 
various porosities of the medium. The curves of numerical calculation results for the pressure drop 
values correlate well with the curves of experimental data. The particle deposition efficiency was 
calculated depending on the Stokes number, we found that the calculations results and experimental 
data from other authors are entirely consistent for the porosity 0.8ε = , and there is a significant 
difference for 0.7ε =  and 0.6ε =  due to the limits of applicability of the semi-empirical formula and 
the particle start position. 
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