Министерство образования и науки Российской Федерации Белгородский государственный технологический университет им. В.Г. Шухова Департамент жилищно-коммунального хозяйства Белгородской области Совет молодых ученых и специалистов Белгородской области при Губернаторе Белгородской области Филиал ПАО «МРСК-Центр» — Белгородэнерго Белгородский институт альтернативной энергетики Донбасский государственный технический университет, (Алчевск) Донбасская национальная академия строительства и архитектуры (г. Макеевка)

II Международная научно-техническая конференция

ЭНЕРГЕТИЧЕСКИЕ СИСТЕМЫ

Сборник трудов

(г. Белгород 23-24 ноября 2017 г.)

Белгород 2017

МАКЕТ ДЛЯ ПРАВКИ!

УДК 620.9(082) ББК 3 Э 65

Энергетические системы: сб. трудов II Междунар. науч.-техн. 365 конф.; отв. редактор П.А. Трубаев. – Белгород: Изд-во БГТУ, 2017. – 565 с.

ISBN

В сборнике представлены работы, освещающие современное состояние теоретических и экспериментальных исследований по следующим направлениям:

- теплоэнергетика и теплотехника;
- электроэнергетика и электротехника;
- энергетическое машиностроение;
- системы энергоснабжения;
- -энергосбережение и энергоэффективность;
- альтернативные и возобновляемые источники энергии;
- экология энергетики;
- отопление и строительная теплофизика;
- Энергетика, энерго и ресурсосбережение в технологиях.

Сборник предназначен для широкого круга научных и инженерных работников, а также аспирантов, магистрантов и студентов высших учебных заведений.

Издание публикуется в авторской редакции.

Конференция организована при поддержке Российского фонда фундаментальных исследований (грант РФФИ № 17-08-20566).

УДК 620.9(082) ББК 3

ISBN

© Белгородский государственный технологический университет (БГТУ) им. В.Г. Шухова, 2017

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СОРБЦИОННЫЕ СВОЙСТВА ПОРИСТЫХ МАТЕРИАЛОВ

д-р хим. наук, проф. Новиков В.Ф. студент Муртазина Г.Р. Казанский государственный энергетический университет, г.Казань.

Аннотация. В работе рассмотрена сравнительная характеристика сорбционных свойств Силохрома-С-80 в зависимости от температуры по отношению к органическим растворителям. Приведен график зависимости времени удерживания от температуры, а также схема лабораторной установки для исследования сорбционных свойств адсорбентов методом колоночной жидкостной хроматографии (восходящий вариант).

В настоящее время пористые материалы широко используются в различных областях науки и техники. Особенно широко эти материалы применяются в хроматографии в качестве адсорбентов и инертных твердых носителей для газо-жидкостной и высокоэффективной жидкостной хроматографии органических соединений. В то же время механизм сорбционных процессов с участием сорбентов и сорбатов до конца не изучены, что является актуальным направлением проводимых исследований. Поэтому цель настоящей работы заключалась в изучении сорбционных свойств пористых материалов и влияние на них температуры.

В продолжение ранее проведенных исследований методом восходящей колоночной жидкостной хроматографии были изучены сорбционные свойства органических растворителей различной физикохимической природой. В качестве растворителей исследовали неполярные предельные углеводороды, а также полярные вещества с низкой температурой кипения, что позволило ускорить процесс хроматографического разделения [1-2]. На основе литературных данных приведены обобщенные физико-химические свойства растворителей для жидкостной колоночной хроматографии и проведена их предварительная оценка для использования в качестве элюентов [3-4].

Изучение изменения свойств Силохрома-С-80, используемому в адсорбционной и высокоэффективной жидкость-жидкостной хроматографии в качестве адсорбента, в зависимости от температуры, проводили на сконструированной лабораторной установке, схема которой приведена на рис. 1.

МАКЕТ ДЛЯ ПРАВКИ! Версия от 30.11.2017.



Рис.1. Лабораторная установка для исследования сорбционных свойств адсорбентов методом колоночной жидкостной хроматографии (восходящий вариант): I – емкость для подачи растворителя; 2 – емкость для подачи растворителя в хроматографическую колонку; 3 – хроматографическая колонка с адсорбентом; 4 – емкость для слива растворителя; 5 – шкала для контроля растворителя по длине сорбционного слоя; 6 – регулировочный вентиль; 7 – сетка для фиксации сорбентов в хроматографической колонки; 8 – термометр

Исследуемые сорбенты загружали в стеклянные хроматографические колонки длиной 120 мм и внутренним диаметром 4 мм. Растворители подавали снизу из емкости. В этом случае за счет капиллярных сил растворитель поднимался по длине сорбционного слоя. Время подъема растворителя фиксировали секундомером через каждые 10 мм.

На рис. 2 приведена зависимость времени удерживания ацетона, гексана, метилэтилкетона от температуры. Как видно из рис., в интервале температур от 0° до 50° С это влияние незначительно. Более стабильные результаты получаются при $t = 20^{\circ}$ С, где все исследуемые вещества имеют близкие значения.

МАКЕТ ДЛЯ ПРАВКИ! Версия от 30.11.2017.

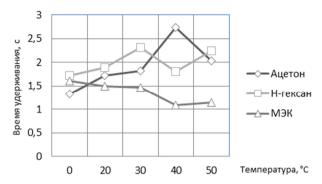


Рис. 2. Зависимость времени удерживания ацетона, гексана и метилэтилкетона от температуры.

Выводы. Таким образом, для адсорбента Силохром-С-80 влияние температуры для исследуемых органических веществ в интервале температур от 0° до 50° С незначительные.

Библиографический список

- 1. **Муртазина Г.Р., Снигирева Ю.В., Новиков В.Ф.** Сравнительная характеристика адсорбционной способности природных и синтетических пористых материалов // XII Международная научно-техническая конференция студентов, аспирантов и молодых ученых «Энергия-2017». Иваново: ИГЭУ, 2017. С. 211-212.
- 2. Снигирева Ю.В., Хабабутдинов Д.А., Ялалов И.Ф. Хроматографическое поведение растворителей в восходящей колоночной жидкостной хроматографии // Международная научно-практическая конференция «Приоритетные задачи и стратегии развития технических наук». Тольятти, 2016. С. 45-47.
- 3. Физико-химические свойства растворителей для колоночной хроматографии / В.Ф. Новиков, Ю.В. Снигирева, Д.А. Хабабутдинов, И.Ф. Ялалов // XIII Международная научно-практическая конференция. 2016. №4-4. С. 85-89.
- 4. Применение новых сорбционных материалов в энергетике / Ю.В. Снигирева, Д.А. Хабабутдинов, И.Ф. Ялалов и др. // VIII Всероссийская научнотехническая конференция «Энергетика, состояние, проблемы, перспективы». Оренбург: ОГУ, 2016. С. 38-40.