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ВВЕДЕНИЕ 

Актуальность темы исследования 

Одной из характерных черт развития строительной индустрии последних 

десятилетий является создание новых и более совершенных кладочных изделий, 

связующих материалов и систем армирования. Следствием этого является высокая 

вариативность прочностных и деформационных свойств каменных кладок с ярко 

выраженными физической нелинейностью и анизотропией. Эта тенденция 

вызывает острую потребность в совершенствовании расчетов строительных 

конструкций и элементов из рассматриваемых материалов, среди которых 

значимую долю составляют стены из неармированных каменных кладок, в том 

числе перегородки, поперечные несущие стены, воспринимающие совместно 

вертикальные и горизонтальные (ветровые, сейсмические и др.) нагрузки, а также 

эффективные комбинированные системы несущих каменных заполнений в составе 

железобетонных и стальных каркасов зданий. 

Создаваемые новые кладочные материалы зачастую имеют более высокие 

прочностные характеристики, что позволяет уменьшать толщины стен при 

проектировании, но следствием этого является преобладание в них сложного 

плоского напряженного состояния, которое существенно отличается от 

одноосного, описываемого стержневыми моделями на основе гипотезы плоских 

сечений. В связи с этим расчеты стен необходимо проводить на базе теорий, в 

которых возможно рассматривать такие сложные напряженные состояния. В 

работе для этого принята деформационная теория пластичности, которая 

применительно к каменной кладке отстает по проработанности от известных 

моделей для железобетонных конструкций, в частности не учитываются 

дилатационные эффекты и не рассматривается пост-пиковое поведение. Кроме 

того, анизотропия прочности каменных кладок существенно влияет на 

напряженно-деформированное состояние конструкций, что требует разработки 

соответствующих критериев прочности, основанных на современных 

экспериментальных методах, доступных в инженерной практике. 
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Таким образом, совершенствование методов и методик расчета стен из 

неармированных каменных кладок с учетом физической нелинейности, большой 

вариативности их физико-механических характеристик и анизотропии прочности 

является актуальной задачей строительной механики. 

Степень разработанности темы исследования 

Деформационная теория пластичности, называемая также теорией малых 

упругопластических деформаций, была разработана А. А. Ильюшиным, и при 

простом нагружении стала обобщением деформационной теории течения Г. Генки. 

Работы в области деформационной теории пластичности также проводились 

В. В. Новожиловым и др. 

В работах Н. М. Матченко, А. А. Трещева и др. введен «потенциал 

деформаций», решающий проблему отсутствия «единой кривой деформирования» 

для разносопротивляющихся изотропных и анизотропных материалов. 

В рамках деформационной теории пластичности нелинейные модели бетона 

и железобетона, которые в перспективе после определенных уточнений могут быть 

распространены и на каменную кладку, были разработаны Г. А. Гениевым, 

В. Н. Киссюком и Г. А. Тюпиным, А. А. Гвоздевым и Н. И. Карпенко, 

В. М. Кругловым, В. И. Корсуном, С. Ю. Фиалко, D. Darwin и D. Pecknold, и др. 

Одни из первых экспериментальных и теоретических исследований в области 

расчетов каменных конструкций были проведены Л. И. Онищиком, В. А. Камейко, 

И. Т. Котовым, Н. И. Кравчени, С. А. Семенцовым, А. А. Шишкиным и 

С. В. Поляковым. Критерии прочности каменной кладки и ортотропная 

деформационная модель описаны Г. А. Гениевым и Г. А. Тюпиным. 

Современные исследования каменных конструкций связаны с работами 

О. В. Кабанцева, В. Н. Деркача, И. Е. Демчука, Р. Б. Орловича, М. К. Ищука, 

Н. Н. Ласькова, Д. В. Артюшина, Г. Г. Кашеваровой, А. М. Белостоцкого, 

Б. С. Соколова, А. Б. Антакова, С. А. Капустина, С. Ю. Лихачевой и др. Среди 

зарубежных исследований плоского напряженного состояния каменных кладок 

известны работы A. W. Page, A. T. Vermeltfoort, T. M. J. Raijmakers, W. Mann, 

H. Müller, H. R. Ganz, B. Thürlimann, P. B. Lourénço, M. Weber и др. 
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Существующие методы расчета каменных конструкций эффективно 

описывают определенные аспекты их предельного состояния. В одних строятся 

сложные модели анизотропии прочности, но не учитывается физическая 

нелинейность, в других развиваются физически нелинейные модели, 

использующие упрощенные критерии прочности. В действующем СП 

15.13330.2020 содержится методика расчета с учетом физической нелинейности 

только для сжатых столбов. 

Цель исследования – разработать модель деформирования неармированной 

каменной кладки для расчета стен при плоском напряженном состоянии с учетом 

физической нелинейности и анизотропии прочности на основе деформационной 

теории пластичности. 

Задачи исследования: 

1. Выявить особенности напряженно-деформированного состояния и 

механизмы разрушения каменных стен при плоском напряженном состоянии путем 

анализа теоретических и экспериментальных работ других авторов. 

2. Разработать критерий прочности каменных кладок с учетом анизотропии 

при плоском напряженном состоянии. 

3. Разработать модель деформирования неармированной каменной кладки 

при плоском напряженном состоянии с учетом физической нелинейности и 

анизотропии прочности на основе деформационной теории пластичности. 

4. Составить алгоритмы расчета и написать компьютерную программу, 

реализующую модель на базе метода конечных элементов для расчета стен. 

5. Провести численные расчеты каменных стен при совместном действии 

вертикальных и горизонтальных сил и сравнить полученные результаты с 

экспериментальными данными и моделями других авторов. 

Объектом исследования являются неармированные каменные стены, 

испытывающие плоское напряженное состояние. 

Предметом исследования являются параметры напряженно-

деформированного состояния каменных стен с учетом анизотропии прочности и 

физической нелинейности. 
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Научная гипотеза заключается в том, что поставленная цель диссертации 

может быть достигнута с применением инвариантной формы деформационной 

теории пластичности путем задания определяющих соотношений в виде 

нелинейных функций, зависящих от вида напряженного состояния и угла 

ориентации главных напряжений относительно осей анизотропии. 

Научная новизна и положения, выносимые на защиту: 

1. Разработан критерий прочности каменных кладок с учетом анизотропии 

при плоском напряженном состоянии. Критерий записан в инвариантной форме, 

позволяющей применять его в физически нелинейных моделях деформационного 

типа. Минимальный набор из пяти стандартных испытаний на одноосные 

нагружения: сжатие и растяжение вдоль и поперек горизонтальных швов, а также 

сжатие под углом 45° к горизонтальным швам кладки, позволяет применять его для 

широкого класса неармированных каменных конструкций. 

2. Разработана модель деформирования неармированной каменной кладки 

при плоском напряженном состоянии с учетом физической нелинейности и 

анизотропии прочности на основе деформационной теории пластичности. 

Комбинация известных соотношений для бетона совместно с критерием прочности 

и введенными гипотезами о виде аппроксимационных поверхностей энергии 

разрушения и предельного параметра пластичности позволили учесть в данной 

модели эффекты дилатации и разупрочнение при появлении и развитии трещин. 

3. На базе метода конечных элементов, авторской модели каменной кладки и 

метода переменных параметров упругости разработаны алгоритмы расчета, по 

которым на языке программирования Python написана программа. Выявлена 

картина распределения трещин и механизмы разрушения стен, численно получена 

их полная диаграмма деформирования, соответствующая экспериментальным 

данным и результатам моделей других авторов. Дисперсионный анализ 

чувствительности модели показал большое влияние на предельное состояние стен 

и характеристики пластичности разрушения таких параметров, как пределы 

прочности кладки на растяжение и сдвиг. 
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Теоретическая значимость работы: 

1. Показана значимость учета физической нелинейности и анизотропии 

прочности в расчетах неармированных каменных стен для изучения эффектов 

перераспределения напряжений внутри конструкции стены и выявления резервов 

ее несущей способности. 

2. Выявленные по результатам расчетов картина распределения трещин и 

механизмов разрушения, а также проведенный анализ чувствительности 

предложенной расчетной модели показали значительное влияние на предел 

прочности каменных стен характеристик прочности кладки на растяжение и сдвиг. 

3. Коэффициент вариации, превышающий 10%, приведенный в известных 

экспериментальных работах других авторов, для значений пределов прочности на 

растяжение и сдвиг совместно с п. 2 указывает на важность развития науки о 

силовом сопротивлении каменной кладки в направлении совершенствования 

методик по экспериментальному определению этих характеристик, в частности, 

необходимость в стандартизации испытаний на диагональное раскалывание. 

Практическая значимость работы: 

1. Разработанный критерий прочности каменных кладок с учетом 

анизотропии определяется на основе минимального набора из пяти стандартных 

испытаний, методики которых присутствуют в отечественных или зарубежных 

нормативных документах. 

2. С использованием предложенной модели деформирования каменной 

кладки составлены расчетные алгоритмы и написана компьютерная программа на 

языке Python, реализующая метод конечных элементов, которые позволяют 

выполнять физически нелинейный расчет каменных стен при плоском 

напряженном состоянии. 

Методология и методы исследования 

Исследование опирается на общепризнанные фундаментальные допущения и 

гипотезы теории упругости и пластичности, основанные на базовых принципах 

механики деформируемого твердого тела с элементами механики разрушения в 

рамках гипотезы размазанных трещин. Реализация физически нелинейных моделей 
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выполнена с использованием шагово-итерационных алгоритмов. Статистическая 

обработка имеющихся экспериментальных данных проведена с использованием 

известных моделей s- и t-распределений. 

Для решения задач механики деформируемого твердого тела использован 

метод конечных элементов. Численные методы реализованы с использованием 

языка программирования Python и открытых библиотек: NumPy и SciPy для 

выполнения расчетов и Matplotlib для визуализации данных. Решение систем 

уравнений выполнено с применением библиотеки символьных вычислений SymPy, 

анализ чувствительности модели – с применением библиотеки SALib. 

Достоверность результатов и выводов подтверждается получением 

теоретических результатов строгими математическими методами. Результаты 

работы основаны на фундаментальных законах теории упругости и пластичности, 

базирующихся на принципах механики деформируемого твердого тела с 

элементами механики разрушения в рамках гипотезы размазанных трещин. 

Численные расчеты валидированы на известных экспериментальных данных, 

напряженно-деформированное состояние сравнивалось с аналогичным, 

полученным в других программных комплексах и на основе моделей других 

авторов. 

Апробация результатов проводилась путем обсуждения основных 

положений и результатов диссертационного исследования на международных и 

всероссийских конференциях: 

− VIII и IX Международный симпозиум «Актуальные проблемы 

компьютерного моделирования конструкций и сооружений», г. Тамбов, 17–21 мая 

2023 года, г. Пенза, 21–24 мая 2025 года; 

− Международная научно–техническая конференция «Строительство и 

архитектура: теория и практика развития отрасли» (CATPID-2024), г. Нальчик, 

30 сентября – 03 октября 2024 года; 

− XI и XII Международная научная конференция «Задачи и методы 

компьютерного моделирования конструкций и сооружений» («Золотовские 

чтения»), г. Москва, 19–20 сентября 2024 года, 21–22 сентября 2023 года; 
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− I конференция по каменным конструкциям «Онищиковские чтения»,

г. Москва, 16–17 мая 2024 года; 

− XXVII International Scientific conference on Advance in Civil Engineering

«Construction the Formation of Living Environment», г. Ереван, Армения, 25–27 

апреля 2024 года; 

− XXV, XXVI и XXIX Нижегородская сессия молодых ученых, г. Нижний

Новгород, 10–13 ноября 2020 года, 25–28 мая 2021 года, 12–15 ноября 2024 года; 

− X, XI и XII Всероссийский Фестиваль науки, г. Нижний Новгород, 14–15

октября 2020 года, 20–21 октября 2021 года, 18–19 октября 2022 года. 

В полном объеме диссертация докладывалась 26 сентября 2025 года 

на расширенном заседании кафедры «Теория сооружений и техническая 

механика» ННГАСУ под председательством Б. Б. Лампси, канд. техн. наук, 

доцента, зав. кафедрой «Теория сооружений и техническая механика» ННГАСУ. 

Внедрение результатов исследований 

Результаты диссертационного исследования использованы в деятельности 

ООО НПФ «СКАД СОФТ» при разработке и внедрении пакета плагинов КладК к 

SCAD++, а также использованы при публичном обсуждении проекта Свода правил 

«Каменные конструкции и армокаменные конструкции. Основные положения». 
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ГЛАВА 1  

АНАЛИЗ ПРОБЛЕМЫ 

Применение каменных несущих конструкций является актуальным в рамках 

концепции устойчивого развития и минимизации углеродного следа [72], а также в 

регионах с устоявшимся рынком или областях, где освоение прочих технологий 

может быть нерентабельно из-за малого объема работ [44]. Разработанная модель 

может быть применена для выполнения физически нелинейных расчетов 

неармированных стен таких зданий. 

Несмотря на то, что по данным Росстата [41] суммарная доля каменных и 

кирпичных зданий в общей площади жилых домов в России упала с 46% в 2009 

году до 26% в 2024 году, каменные конструкции заняли свою нишу в современных 

фасадных системах, перегородках, а также в эффективных комбинированных 

системах несущих каменных заполнений в составе железобетонных и стальных 

каркасов зданий. Применение разработанной модели актуально для расчета 

плоско-напряженных конструкций перегородок на упругом основании [15, 38, 13], 

а также описанных комбинированных систем [8, 68] при перекосе этажных ячеек. 

Развитие методов расчета каменных конструкций также остается актуальным 

для существующих зданий, которые по данным Росстата [42] по площади жилых 

помещений по-прежнему являются в России абсолютным большинством, а также 

для объектов архитектурного наследия при эксплуатации, техническом 

перевооружении или реконструкции. Необходимость применения разработанной 

модели возрастает для исторических зданий сложных геометрических форм, для 

которых невозможно построение эквивалентной рамной расчетной модели [56, 

111]. 

Развитие теоретических моделей расчета каменных конструкций является 

актуальной задачей, для чего требуется установить основные особенности их 

работы под статической нагрузкой, которые должны быть отражены в данных 

моделях. 
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1.1 Особенности работы каменных стен под статической нагрузкой 

В разделе рассмотрены основные конструктивные особенности каменной 

кладки как материала и ее работы в конструкции каменных стен: 

1. Влияние соотношения прочностных и деформационных характеристик 

кирпича и раствора на свойства композитного материала кладки. Одно из первых 

экспериментальных и теоретических исследований в области расчетов каменных 

конструкций было проведено Л. И. Онищиком [34, 35], который предложил 

эмпирическую зависимость предела прочности кладки от прочности раствора и 

блоков. Данная зависимость легла в основу первых отечественных нормативных 

документов по каменным и армокаменным конструкциям. Позднее другими 

авторами были подобраны коэффициенты этой зависимости для большой 

номенклатуры изделий, которые используются в действующем своде правил [1]. 

Данные коэффициенты были получены для кладок на низкомарочных растворах и 

демонстрируют затухание роста прочности кладки с увеличением прочности 

раствора. Современные исследования показывают, что для кладок на 

высокопрочных растворах это затухание носит менее выраженный характер, что 

отражено в европейских нормативных документах [53]. Вопрос аппроксимации 

такой зависимости остается актуальным и обусловлен большим числом 

параметров. В работе [89] авторами была обучена нейронная сеть на выборке из 

611 образцов для предсказания предела прочности на сжатие каменной кладки. В 

диссертационном исследовании прочность кладки как квазиоднородного 

материала считается известной и полученной экспериментально в результате 

стандартизированных испытаний. 

2. Физическая нелинейность. В каменных кладках физический тип 

нелинейности является основным, приводящим к изменению напряженного 

состояния в процессе нагружения, в частности, он может вызывать догрузку 

ненагруженных стен многоэтажных каменных зданий [36, 37]. Вопросам 

псевдопластичности каменной кладки применительно к сейсмическим 

воздействиям посвящены работы О. В. Кабанцева [24, 25]. Учет физической 

нелинейности позволяет обосновать значение коэффициента допускаемых 
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повреждений, введенный в сейсмических нормах для описания способности 

несущей системы к рассеянию энергии. Используемая в действующих нормах [1] 

логарифмическая зависимость, введенная Л. И. Онищиком, не универсальна, в 

работе [106] показано существенное влияние характеристик раствора на 

пластичность разрушения каменных кладок. В диссертационном исследовании 

показано также влияние вида напряженного состояния и ориентации главных 

напряжений на вид кривой деформирования каменной кладки. 

3. Разносопротивляемость. Каменная кладка, являясь хрупким материалом, 

наряду с бетоном, проявляет выраженные свойства разносопротивляющегося 

материала. Это выражается в несимметричности поверхности разрушения 

относительно плоскости чистого сдвига в осях главных напряжений и зависимости 

характера разрушения (хрупкое, псевдопластическое или смешанное) от вида 

напряженного состояния (жесткости напряженного состояния). Данному вопросу 

посвящено достаточно мало экспериментальных работ ввиду сложности их 

проведения на больших образцах с требуемым размером выборки. В работах [64, 

83, 92, 113] проведены лабораторные или численные исследования при растяжении 

или сжатии образцов, сопровождавшиеся записью кривой деформирования, 

которая дает качественную картину зависимости пластичности разрушения от вида 

напряженного состояния и ориентации главных напряжений. 

4. Анизотропия прочности характерна для кладок из прямоугольных камней, 

в отличие от бутовой кладки с произвольно ориентированными в объеме швами. 

Наиболее полные экспериментальные исследования анизотропии прочности при 

плоском напряженном состоянии были проведены Пейджем (A. W. Page) [97, 98, 

99] на образцах каменной кладки при различной ориентации растворных швов и во 

всем диапазоне напряженных состояний от двухосного растяжения до двухосного 

сжатия. Результаты этих исследований легли в основу предложенного в работе 

критерия прочности. 

5. Анизотропия деформационных характеристик каменных кладок менее 

изучена ввиду того, что большинство кладок обладают малой степенью 

анизотропии упругих свойств. В работе [14] показано, что при статическом расчете 



15 

каменных конструкций, кладка которых выполнена из керамического полнотелого 

и пустотелого (с пустотностью до 25%) кирпича, ее деформационные 

характеристики допустимо принимать как для изотропного материала. В работе 

[113] приведены некоторые результаты численного моделирования и построены 

графики зависимости начального модуля деформации от ориентации главных 

напряжений. В диссертационном исследовании предложена модель, не 

учитывающая анизотропию упругих характеристик и развитие деформационной 

анизотропии. 

6. Анизотропия коэффициентов вариации. При разработке критерия 

прочности каменной кладки и его валидации по экспериментальным данным 

Пейджа [97, 98, 99] была выявлена существенная анизотропия коэффициентов 

вариации пределов прочности на сжатие и растяжение, что также может вносить 

уточнения в анализ несущей способности на уровне конструкции, разрушение 

которой, как будет показано далее, может быть инициировано различными 

механизмами повреждения. В работе [30] предложена методика расчета, 

учитывающая статистический разброс механических свойств кладки, для анализа 

несущей способности стен. В работе [109] численным методом дискретных 

элементов в сочетании с методом Монте-Карло проведена оценка дисперсии 

предела прочности кладки на растяжение с учетом дисперсии контактных свойств. 

В диссертационном исследовании при валидации разработанной модели проведен 

дисперсионный анализ чувствительности модифицированным методом Морриса 

[69, 94], при этом параметры приняты независимыми с равным коэффициентом 

вариации, ввиду отсутствия данных, что, как указано ранее, требует 

дополнительного экспериментального обоснования. 

7. Анизотропия пост-пикового разупрочнения. Вид ниспадающего участка 

кривой деформирования также зависит от ориентации главных напряжений 

относительно осей ортотропии кладки. Данный эффект наиболее сильно 

проявляется при растяжении кладки [64, 109]. При растяжении вдоль 

горизонтальных растворных швов и малом уровне обжатия наблюдается участок 

псевдопластического деформирования, связанного с трением в перевязанном шве, 
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тогда как при растяжении перпендикулярно швам разрушение носит хрупкий 

характер. В диссертационном исследовании для учета данного эффекта вводятся 

гипотезы, подтвердившие свою эффективность при валидации модели, однако 

требующие дополнительного экспериментального обоснования. 

8. Дилатация каменной кладки мало изучена. В диссертационном 

исследовании предложено использование подхода для бетона [32], который 

показал, что решение с учетом дилатационных эффектов при плоском 

напряженном состоянии значимо не отличается от решения при сохранении 

упругого модуля объемных деформаций. В работе [110] приведены результаты 

испытаний на трехосное сжатие образцов кладки для построения аналитической 

модели кладки при взрывных воздействиях, поскольку для них дилатационные 

эффекты могут быть выражены более ярко. 

9. Механизмы разрушения каменных стен. Переходя от описания свойств 

материала к конструкции, важно отметить основные механизмы разрушения, 

которые должны найти отражение при численном моделировании. В работе [3] 

приведены результат экспериментального исследования масштабных образцов 

стен с разным соотношением сторон из каменной кладки при совместном действии 

вертикальных и горизонтальных сил. В работе [40] автором диссертации по данным 

[3] было проведено численное моделирование плосконапряженных каменных стен, 

по результатам которого была выявлена необходимость совершенствования 

модели для учета характерного механизма разрушения таких конструкций – 

диагонального раскалывания. В работах [101, 112] проведены испытания каменных 

стен, подобные описанным в [3], с записью полной кривой деформирования. На 

данных исследованиях проведена валидация предложенной в диссертации модели 

деформирования каменной кладки. 
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1.2 Обзор существующих методов расчета каменных конструкций 

В области численных расчетов каменных кладок накопился большой опыт, 

требующий некоторого обобщения для выбора оптимальных стратегий. В разделе 

описана широкая классификация, целью которой является выявление места в ней 

разрабатываемой модели, а также обоснование достоверности данных, полученных 

из других исследований на основе этих моделей. 

Классификация методов расчета каменных конструкций, используемых как в 

инженерной, так и научной практике, может быть проведена по двум основным 

признакам (Рисунок 1): 

− по применяемым моделям среды совместно с численными методами, 

которые реализуют расчеты по определяющим законам на ЭВМ; 

− по степени детализации расчетных моделей. 

 
Источник: составлено автором 

Рисунок 1 – Стратегии моделирования каменных кладок 

По первому признаку, можно выделить модели на основе механики 

деформируемого твердого тела (МДТТ) и модели на основе метода дискретных 

элементов (МДЭ).  
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В МДТТ используется гипотеза сплошности или континуальности, согласно 

которой среда распределена в объеме непрерывно и в общем случае неравномерно. 

Это позволяет применить для описания поведения среды внутри тела аппарат 

дифференциально-интегрального исчисления. Для относительно простых 

геометрий и граничных условий решения в МДТТ могут быть получены 

аналитически, иначе используются численные методы, среди которых метод 

конечных элементов (МКЭ, FEM) является самым распространенным. 

В МДЭ материал представляется как набор дискретных частиц произвольной 

формы, взаимодействующих между собой контактными силами. При этом 

решаются полные уравнения динамики во временной области. Исходя из своих 

предпосылок, решения задач МДЭ носят численный характер и решаются на ЭВМ 

соответствующими методами, например, методом отдельных элементов (МОЭ, 

DEM) или другими численными методами. 

Второй признак классификации определяет степень детализации расчетных 

моделей, среди которых первые две группы моделей представляют наибольший 

интерес в инженерной практике: 

1. Моделирование макроэлементов. Моделирование зданий и сооружений с 

использованием макроэлементов рационально в рамках МДТТ, при этом 

конструкции задаются стержневыми элементами. В рамках предложенной 

классификации к макроэлементам будем относить модели на основе теории 

эквивалентных рам (Equivalent-Frame models, EFM) и модели диагональных связей 

(strut-cum-masonry models, Strut-and-Tie Model, STM) [8, 68], в которых каменное 

заполнение каркасных зданий моделируется стержневыми аналогами в виде 

диагональных связей. В работе [61] проведен сравнительный расчет стен в упругой 

стадии между EFM и МКЭ на оболочечных конечных элементах. При 

рассмотрении широкого набора геометрических схем стен отмечается проблема 

его использования при нерегулярном расположении проемов. В работе [96] 

рассматривается нелинейная постановка метода EFM, в которой продольная и 

изгибная жесткость моделируется с использованием фибровой модели 

(«диаграммный метод» согласно отечественной практике), а нелинейная сдвиговая 
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жесткость, характеризующая разрушение по косой штрабе – в виде 

сосредоточенной нелинейности в середине длины элемента. Отмечается проблема 

применимости метода для стен с нерегулярной конфигурацией, а в работе [111] 

указывается также на отсутствие смешанного режима разрушения от сдвига и 

изгиба одновременно. В целом метод хорошо себя зарекомендовал в инженерной 

практике в рамках своих предпосылок, особенно при расчетах на сейсмические 

воздействия. Закреплению метода на практике также способствовало его 

нормативное обоснование в стандартах [50, 54, 55]. 

2. Макромоделирование также наиболее часто реализуется в рамках МДТТ. 

При этом каменная кладка представляется как квазиоднородный изотропный или 

анизотропный материал. Численно расчет реализуется с помощью МКЭ с 

применением оболочечных типов конечных элементов. Данных подход широко 

распространен в инженерной практике ввиду развития CAD-систем и программ 

инженерного анализа по типу SCAD++, Лира-САПР и др., которые совместно 

обеспечивают более быстрый процесс в цикле проектирования здания и позволяют 

учесть его пространственную работу, в отличие от классических подходов, 

основанных на расчете независимых систем рам. Однако нормативное обоснование 

[1] такой методики расчета по-прежнему отстает, отдавая предпочтение более 

консервативной методике, основанной на стержневых аналогах, которую можно 

отнести к упомянутому ранее «моделированию макроэлементов». 

При построении оболочечной конечно-элементной модели физическая 

нелинейность может быть реализована либо в виде теорий пластичности типа 

течения [59, 84, 86], либо в виде деформационных теорий пластичности [46].  

Модели типа течения позволяют реализовать непропорциональный режим 

нагружения. Отдается предпочтение критериям прочности [63, 86, 107], функции 

которых непрерывно дифференцируемы на всей или большей части области 

определения. Однако наиболее полные и сложные модели прочности представлены 

критериями по механизму разрушения [11, 62, 82] с множественными 

пересечениями предельных поверхностей с недифференцируемыми ребрами и 

вершинами. 
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Альтернативой являются физически нелинейные модели деформационного 

типа, в которых рассматривается пропорциональность инвариантов напряженного 

и деформированного состояний. Использование конечных значений напряжений и 

деформаций вместо их приращений снижает требование к дифференцируемости 

предельной поверхности, а возможность моделирования физической нелинейности 

позволяет прогнозировать поведение конструкции с учетом эффектов 

перераспределения напряжений при простом или сходящемуся к простому 

нагружениях [22]. 

3. Микромоделирование. Последние группы моделей используются 

преимущественно в научных исследованиях и ставят своей целью выявить картину 

разрушения каменной кладки на уровне разрушения ее компонентов. Применению 

методов в инженерной практике для расчета зданий и сооружений препятствует 

сложность построения расчетной модели и требуемая большая вычислительная 

мощность. В работах [23, 29] в МДТТ и МКЭ разработаны микромодели каменной 

кладки, учитывающие процессы контактного взаимодействия базовых материалов. 

В работе [109] в МДЭ и МОЭ проведена оценка дисперсии предела прочности 

кладки на растяжение с учетом дисперсии контактных свойств. 

4. Многоуровневое моделирование дает более комплексное решение, в 

частности, в работе [27] приведена двухуровневая модель, описывающая 

поведение кусочно-однородных сред с регулярной внутренней структурой, к 

которым можно отнести каменную кладку. Для верхнего уровня краевая задача 

решается как для квазиоднородного материала под действием реальных нагрузок, 

а для нижнего − для материала его составляющих, нагруженных по схеме, 

определяемой характером изучаемой кусочно-однородной среды. 

Данные типы моделей позволяют получить макромеханические 

характеристики кладки без проведения дорогостоящих испытаний 

крупногабаритных образцов и применять эти результаты в упомянутых ранее типах 

моделей. 
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1.3 Обзор существующих деформационных моделей пластичности 

1.3.1 Основные понятия и принятые обозначения 

Деформационные теории пластичности представляют собой модели 

нелинейно-упругого тела. В теории вводится понятие параметра пластичности, 

который в общем случае для изотропного тела не должен зависеть от выбора 

системы координат, т.е. выражаться как функция инвариантов тензоров 

напряжений и деформаций: 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3, , , , , 0f I I I I I I =  σ σ σ ε ε ε , (1) 

для ортотропного тела дополнительно – как функция ориентации главных 

напряжений относительно местной системы координат, связанной с осями 

ортотропии, которая (ориентация) задается, например, последовательностью 

эйлеровых углов α, β, χ относительно той же местной системы координат: 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3, , , , , , , , 0f I I I I I I α β χ =  σ σ σ ε ε ε , (2) 

Для единства изложения оригинальные обозначения рассматриваемых ниже 

моделей не сохранены, а принятые сведены в Таблицу 1 и выражены через 

основные инварианты тензора напряжений Ii (σ) и деформаций Ii (ε), инварианты 

девиатора тензора напряжений Ji (s) и деформаций Ji (e) или главные напряжения σi 

и деформации εi, при плоском напряженном состоянии с учетом (28): 

 
( ) ( )

( )

2 2 2
2

2 2 2 2
2

1 3
3
1 4(1 ) ( ) 9

18
[ ]

x y x y xy

x y x y xy

J

J

= σ + σ − σ σ + τ

= + ν ε + ε − ε ε + γ

s

e
, (3) 

Таблица 1 – Инварианты тензоров напряжений и деформаций 

Наименование Обозначение, формула 

Интенсивность напряжений и деформаций  
(эквивалентные напряжения и деформации Мизеса) ( ) ( ) ( )2 23 ; 4 3em emJ Jσ = ε =s e  

Интенсивность касательных напряжений  
и сдвиговых деформаций ( ) ( )2 2; 4int intJ Jτ = γ =s e  

Октаэдрическое касательное напряжение  
и деформация ( ) ( ) ( ) ( )2 22 3 ; 8 3oct octJ Jτ = γ =s e  
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Октаэдрическое нормальное (среднее) напряжение  
и деформация ( ) ( )1 13; 3oct octI Iσ = ε =σ ε  

Объемная деформация ( )1V Iε = ε  

Параметр Лоде-Надаи по напряжениям ( ) ( )2 3 1 32 1σµ = σ − σ σ − σ −  

Параметр Лоде-Надаи по деформациям ( ) ( )2 3 1 32 1εµ = ε − ε ε − ε −  

 

 В работе при описании основных физических соотношений используется 

нотация Фойгта, согласно которой компоненты тензоров напряжений и 

деформаций представлены в виде векторов, а компоненты тензоров упругих 

характеристик – в виде матриц согласно Таблице 2. 

Таблица 2 – Нотация Фойгта для тензорных величин 

Наименование тензора 
Векторное представление 

Объемное напряженное и 
деформированное состояние 

Обобщенное плоское 
напряженное состояние 

напряжений 6∈σ   {σx, σy, σz, τyz, τxz, τxy}T 3∈σ   {σx, σy, τxy}T 
деформаций 6∈ε   {εx, εy, εz, γyz, γxz, γxy}T 3∈ε   {εx, εy, γxy}T 
девиатора напряжений 6∈s   σ − σoctδ 3∈s   σ − σoctδ 
девиатора деформация 6∈e   ε − εoctδ 3∈e   ε − εoctδ 
единичный 6∈δ   {1, 1, 1, 0, 0, 0}T 3∈δ   {1, 1, 0}T 
податливости 6 6×∈S   3 3×∈S   
жесткости 1 6 6− ×= ∈C S   1 3 3− ×= ∈C S   

 

Приведенные в классическом труде С. Г. Лехницкого [33] зависимости 

теории упругости анизотропного тела изложим в трактовке согласно обозначениям 

[65], принятым в современных программных комплексах. 

Компоненты некоторого вектора x в одной системе координат могут быть 

записаны в другой системе путем умножения вектора на матрицу преобразования 

A. В рамках работы рассматриваются матрицы А, приводящие к повороту системы 

координат, в таком случае компоненты матрицы aij представляют собой 

направляющие косинусы: 
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 ′ =x Ax , (4) 

 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 =  
  

A .  

При переходе к новой системе координат с использованием матрицы А 

компоненты тензора напряжений, представленные в виде шестимерного вектора 

согласно нотации Фойгта, преобразуются умножением на матрицу Tσ: 

 

2 2 2
11 12 13 12 13 11 13 11 12
2 2 2
21 22 23 22 23 21 23 21 22
2 2 2
31 32 33 32 33 31 33 31 32

21 31 22 32 23 33 22 33 23 32 21 33 23 31 21 32 22 31

11 31 12 32 13 33 12 33 13 32 11

,

2 2 2
2 2 2
2 2 2

a a a a a a a a a
a a a a a a a a a
a a a a a a a a a

a a a a a a a a a a a a a a a a a a
a a a a a a a a a a a

σ

σ

′ =

=
+ + +
+

σ T σ

T

33 13 31 11 32 12 31

11 21 12 22 13 23 12 23 13 22 11 23 13 21 11 22 12 21

a a a a a a a
a a a a a a a a a a a a a a a a a a

 
 
 
 
 
 
 + +
 

+ + +  

. (5) 

Компоненты тензора деформаций, представленные в виде шестимерного 

вектора согласно нотации Фойгта, преобразуются путем умножения на матрицу Tε: 

 ,ε′ =ε T ε 1−
ε σ=T RT R , (6) 

где R – диагональная матрица Рейтера (Reuter’s matrix), вводимая в связи с тем, что 

техническая сдвиговая деформация в два раза больше тензорной: 

 

1
1

1
2

2
2

⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅

=  ⋅ ⋅ ⋅ ⋅ ⋅ 
 ⋅ ⋅ ⋅ ⋅ ⋅
 
⋅ ⋅ ⋅ ⋅ ⋅ 

R . (7) 

Компоненты тензора податливости S и жесткости С, представленные в виде 

матриц, размерностью 6×6, преобразуются согласно выражениям: 

 T
ε ε′ =S T ST , 

 T
σ σ′ =С T СT . (8) 
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1.3.2 Деформационная теория пластичности Генки-Ильюшина 

Деформационная теория пластичности получила развитие в работах 

А. А. Ильюшина [20, 21, 22] и его учеников. В работе [5] изложены основные 

положения теории, а в работе [19] выполнен анализ постулатов теории и их 

применимости к оценке напряженно-деформированного состояния, возникающего 

из-за деформационной анизотропии. Далее рассмотрены основные положения 

теории, ставшие основой при разработке прикладных моделей для каменной 

кладки и бетона. 

Компоненты тензора деформаций ε могут быть представлены в виде суммы 

компонент шарового тензора и девиатора тензора деформаций e, в нотации Фойгта: 

 oct= ε +ε δ e , (9) 

Для определения зависимости каждой из компонент от напряженного 

состояния, в деформационной теории пластичности вводятся следующие гипотезы: 

1. Объёмная деформация εV = 3εoct прямо пропорциональна среднему 

нормальному напряжению σoct, при этом коэффициент пропорциональности, 

равный объемному модулю упругости К, соответствует упругой стадии работы. 

Это позволяет ввести зависимость шарового тензора деформаций от шарового 

тензора напряжений, в нотации Фойгта: 

 1
3oct octK

ε = σδ δ , (10) 

2. Девиатор тензора деформаций e пропорционален девиатору тензора 

напряжений s, в нотации Фойгта: 

 
02G

ψ
=e Rs , (11) 

где  G0 – начальный модуль сдвига; 

ψ – параметр пластичности; 

R – диагональная матрица Рейтера (7). 

3. Интенсивность напряжений является функцией интенсивности 

деформаций, не зависящей от вида напряжённого состояния. Последняя гипотеза 

позволяет установить функциональную зависимость для параметра пластичности: 



25 

 ( )2 03 em

em

f J G ε
ψ = =   σ

s , (12) 

где σem = f (εem) – обобщенная кривая деформирования, устанавливается 

экспериментально путем преобразования кривой деформирования при одноосном 

растяжении согласно Рисунку 2, а. 

  

(а) Источник: составлено автором (б) Источник: составлено автором 

Рисунок 2 – Построение обобщенной кривой деформирования (а) и графическая 

интерпретация семейства обобщенных кривых деформирования при плоском 

напряженном состоянии (б) согласно теории Генки-Ильюшина 

На Рисунке 2, б, представлена графическая интерпретация зависимостей (11), 

(12) для плоского напряженного состояния, где направление А соответствует 

произвольной траектории простого нагружения, когда все главные напряжения 

возрастают пропорционально одному параметру. При этом линии уровня 

поверхности интенсивности деформаций представляют собой эллипсы Мизеса. 

Итоговая форма уравнения (9) описывается зависимостью: 

 
03 2

oct

K G
σ ψ

= +ε δ Rs , (13) 

Такая форма записи отражает физический смысл определяющих уравнений, 

выделяя упругую объемную деформацию и нелинейную сдвиговую деформацию, 

однако затрудняет решение практических задач, т.к. нарушается принцип 

независимости действия отдельных нагрузок. 
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Альтернативная форма записи с использованием переменных параметров 

упругости сводит решение нелинейных зависимостей к последовательности 

решения упругих задач. Для этого в обобщенном законе Гука используется 

изотропная секущая матрица податливости Ssec: 

 sec=ε S σ , (14) 

 

1
1

1 1
2 2

2 2
2 2

sec E

−ν −ν ⋅ ⋅ ⋅ 
 −ν −ν ⋅ ⋅ ⋅
 −ν −ν ⋅ ⋅ ⋅ =
⋅ ⋅ ⋅ + ν ⋅ ⋅ 
⋅ ⋅ ⋅ ⋅ + ν ⋅ 

 ⋅ ⋅ ⋅ ⋅ ⋅ + ν 

S

  
где E, ν – секущие значения параметров упругости, равные [5]: 

 ( ) ( )
0

0 0

3
2 1 1 2

EE =
ψ + ν + − ν

; 
( ) ( )
( ) ( )

0 0

0 0

1 1 2
2 1 1 2
ψ + ν − − ν

ν =
ψ + ν + − ν

, (15) 

где E0, ν0 – их начальные значения. 

1.3.3 Модель каменной кладки Тюпина 

Для каменных кладок известна деформационная теория пластичности 

Г. А. Тюпина [46]. Закон деформирования можно представить в нотации Фойгта 

для обобщенного плоского напряженного состояния в виде: 

 0= ψε S σ , (16) 

 

1 1

1 1
0

1

,
x yx y

xy x y yx x xy y

xy

E E
E E E E

G

− −

− −

−

 −ν ⋅
 = −ν ⋅ ν = ν 
 ⋅ ⋅ 

S   

где ψ – параметр пластичности, определяемый по формуле (Рисунок 3, a): 

 ( ) ( ) ( )1 2 3
2, , ,

1 1 int

f I J Jψ = α =   + − τ
σ s s , (17) 

где ,int int int uτ = τ τ , τint,u – пиковое значение интенсивности касательных 

напряжений, определяемое исходя из критерия прочности Г. А. Гениева для 

плоского напряженного состояния каменной кладки [12] (Рисунок 3, б). 
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В данной модели рассматривается ортотропная нелинейная модель 

материала. При написании закона для параметра пластичности принята нелинейная 

зависимость интенсивности касательных напряжений τint от интенсивности 

сдвиговых деформаций γint, как это сделано в работах [9, 10] для бетона. Пиковое 

значение интенсивности касательных напряжений τint,u получено на основании 

критерия прочности каменной кладки Г. А. Гениева [12] (Рисунок 3, б), который 

описывается эллипсом А в области растяжения и сжатия, и гиперболой B в области 

сдвига. 

 
 

(а) Источник: составлено автором (б) Источник: по данным [12] 

Рисунок 3 – Зависимости ~oct octσ ε , ~int intτ γ  и ~intτ ψ  в модели кладки  

Г. А. Тюпина (а) и критерий прочности Г. А. Гениева для каменной кладки (б) 

Данный критерий позднее был переработан и представлен в работе [11] на 

основании опытных данных зарубежных исследований Пейджа [97, 98, 99]. В 

отличие от классической деформационной теории, критерий, а значит и сам 

параметр пластичности, зависит от трех инвариантов тензора напряжений и угла α, 

характеризующего ориентацию главных напряжений относительной осей 

ортотропии. 

Модель можно считать неполной, т.к. используется начальное (упругое) 

значение коэффициента поперечной деформации – коэффициент Пуассона ν0. В 

классической теории Генки-Ильюшина в формуле (15) установлено переменное 

значение данного коэффициента, исключение могут составлять только 

несжимаемые материалы с ν0 = 0,5, к которым каменная кладка не относится. 
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Постоянство коэффициента ν приводит к тому, что с развитием пластических 

деформаций уменьшается значение объемного модуля деформации (Рисунок 3, a), 

т.е. не выполняется гипотеза упругости объемной деформации согласно 

классической теории. Согласно экспериментальным данным [77, 110], происходит 

обратное – на макроуровне объемная контракция сменяется дилатацией в связи с 

раскрытием магистральных трещин. 

1.3.4 Модель бетона Гениева 

В работах [9, 10] Г. А. Гениевым физически нелинейная зависимость для 

бетона описывается, как и в классической деформационной теории, путем 

разделения тензора деформации на шаровый и девиатор и может быть 

представлена уравнением, в нотации Фойгта: 

 
2

0
0 0 0

1
3 2oct intg

K G G

  ψ ψ ψ = σ − τ + 
   

ε δ Rs , (18) 

где g0 – модуль дилатации; 

ψ – параметр пластичности, определяемый по формуле (Рисунок 4): 

 ( ) ( ) ( )1 2 3
2, ,

1 1 int

f I J Jψ = =   + − τ
σ s s , (19) 

где ,int int int uτ = τ τ , где τint,u – пиковое значение интенсивности касательных 

напряжений, определяемое исходя из критерия прочности Г. А. Гениева [10]. 

В модели вводится поверхность пиковых значений напряжений в 

пространстве главных напряжений, зависящая от трех инвариантов тензора 

напряжений, в отличие от классической деформационной теории А. А. Ильюшина. 

Данная поверхность определяет значение пикового значения касательного 

напряжения τint,u для каждой траектории простого нагружения в пространстве 

главных напряжений. 

Вводится нелинейная зависимость не только девиаторов напряжений и 

деформаций, но и их шаровых тензоров. Уменьшение модуля K по мере развития 

пластических деформаций связывается с уменьшением сопротивляемости бетона 

действию напряжения σoct вследствие прогрессирующего образования трещин. 
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Введение квадратичного члена с модулем дилатации g0 учитывает 

непосредственное увеличение объема за счет раскрытия трещин. 

 
Источник: составлено автором 

Рисунок 4 – Зависимости ~oct octσ ε , ~int intτ γ , ~intτ ψ  в модели бетона Г. А. Гениева 

Определяющее физическое соотношение (18) может быть представлено в 

виде, подобном обобщенному закону Гука для объемного НДС: 
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 
ε S σ δ , (20) 

 

0 0

0 0

0 0
0

00

0

0

1
1

1 1
2 2

2 2
2 2

E

−ν −ν ⋅ ⋅ ⋅ 
 −ν −ν ⋅ ⋅ ⋅
 −ν −ν ⋅ ⋅ ⋅ =
⋅ ⋅ ⋅ + ν ⋅ ⋅ 

 ⋅ ⋅ ⋅ ⋅ + ν ⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ + ν 

S   

В работе [4] для исключения особенности, связанной с невозможностью ее 

применения для конструкций, в которых величина объемной деформации в 

различных точках имеет разные знаки с переходом через ноль, в деформационной 

теории пластичности бетона предлагается объемную деформацию за счет 

увеличения объема трещин определять как величину, пропорциональную не только 

квадрату интенсивности деформаций сдвига, но и общей объемной деформации. 
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1.3.5 Модель бетона Круглова 

Наиболее полное решение для деформационной теории пластичности бетона 

представлено в работах В. М. Круглова [7, 16, 17, 18]. Для общего объемного 

напряженного состояния определяющие зависимости представлены в виде: 

 
0 03 2octK G

ϕ ψ
= σ +ε δ Rs , (21) 

где φ, ψ – параметры пластичности, сложные функции инвариантов тензора 

напряжений, которые далее приведены в принципиальном виде как функции 

соответствующих инвариантов тензоров: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 3 2 3

2 3 1 3

, , , ,

, , , ,
s s

s s

f I J K K f J J

f J J G G f I J

ϕ = =      
ψ = =      

σ s s s

s s σ s
, (22) 

Вид зависимостей σoct – εoct и τoct – γoct, получаемых при использовании 

соответствующих параметров пластичности представлен на Рисунке 5. 

 
Источник: авторская адаптация данных [28] 

Рисунок 5 – Зависимости σoct – εoct и τoct – γoct в модели бетона В. М. Круглова 

В модели в отличие от [9] вводятся два параметра пластичности, что 

позволяет сформулировать нелинейные законы деформирования отдельно для 

шаровой и девиаторной частей тензора напряжений. 

Пиковые значения октаэдрических напряжений устанавливаются на 

основании объемного критерия прочности бетона [28], зависящего от трех 

инвариантов тензора напряжений. 
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На кривых деформирования вводится параметрическая точка, 

соответствующая началу макротрещинообразования. Положение данной точки 

характеризуется предельным значением секущих модулей Ks и Gs. В отличие от 

работы [9], где Gs = 0,5G0 (Рисунок 4), значение предельных секущих модулей 

установлено как функции инвариантов тензора напряжений согласно (22). 

Зависимость (21) также может быть представлена в форме обобщенного 

закона Гука, как это сделано в (14), однако в отличие от (15), переменные 

параметры упругости будут определяться выражениями [17]: 

 ( ) ( )
0

0 0

3
2 1 1 2

EE =
+ ν ψ + − ν ϕ

; 
1

0 0

0 0

1 2 1 21 2
1 1

−
  ϕ − ν ϕ − ν

ν = − ⋅ + ⋅  ψ + ν ψ + ν  
 (23) 

1.3.6 Модель бетона Фиалко 

Деформационная модель бетона С. Ю. Фиалко [47, 48] для тонкостенных 

оболочечных конструкций основывается на классической деформационной теории 

А. А. Ильюшина. Соотношения деформационной теории сформулированы в 

терминах остаточных деформаций, что позволяет моделировать циклические 

нагружения. Данные соотношения можно представить в нотации Фойгта: 

 
03 2

oct
r K G

σ ψ
− = +ε e δ Rs , (24) 

где er – вектор девиатора остаточных деформаций в точке С (Рисунок 6, б), который 

определяется разностью деформаций в точке начала разгрузки P и точке С, при 

упругой разгрузке: 

 ( )
0

1 1
2r P PG

= ψ −e Rs , (25) 

Важным отличием модели С. Ю. Фиалко от рассмотренных ранее является 

учет ниспадающего участка кривой деформирования. Для этого определяющие 

зависимости строятся относительно деформаций, а не напряжений, такой подход 

также удобен в рамках реализации МКЭ в перемещениях. Тогда зависимость (24) 

перепишется в виде: 
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 ( )1023 oct r
GK −= ε + −
ψ

σ δ R e e , (26) 

где ψ – параметр пластичности, определяемый в зависимости от текущей объемной 

деформации εV и объемной деформации в конце последней разгрузки εr
V: 

 ( ) ( )
( )
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0

3 ,
,

3 , ; 0

rem
V V

t em

rem
V V V

c em

G
f

f I J
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ε ε > ε εψ = =    ε ε ≤ ε ε =
 ε

ε e , (27) 

где ft (εem), fc (εem) – обобщенные кривые деформирования при растяжении и сжатии 

соответственно, аналитическое описание которых описано в [47]. 

При плоском напряженном состоянии тонкостенных конструкций согласно 

статической гипотезе теории тонких оболочек σz = 0, тогда с использованием 

зависимости для объемной деформации можно выразить деформации εz: 

 ( )1z x y
ν

ε = − ε + ε
− ν

, (28) 

интенсивность деформаций определится из главных деформаций: 

 
( )

( )
( )

2 2
2 2
1 2 1 22 2

2 1 1 4
3 3 1 3 1em

− ν + ν − ν + ν
ε = ε + ε − ε ε

− ν − ν
, (29) 

Графическая интерпретация зависимости (29) представлена на Рисунке 6, а. 

Увеличение значения коэффициента ν приводит к сжатию эллипса интенсивности 

деформаций вдоль направления двухосного сжатия-растяжения C-T. 

После введения понятия эллипса интенсивности деформаций в двумерном 

пространстве главных деформаций над ним может быть построена поверхность, 

подобная той, что была описана для модели А. А. Ильюшина (Рисунок 2, б). Эта 

поверхность образована семейством обобщенных кривых, соответствующих 

каждой траектории простого (плоского) нагружения. Линия чистого сдвига S-S 

делит эту поверхность на две части, каждой из которых соответствуют свои 

функции обобщенных кривых ft (εem) для траекторий растяжения T и fc (εem) для 

траекторий сжатия C. 
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(а) Источник: составлено автором (б) Источник: составлено автором 

Рисунок 6 – Эллипс интенсивности деформаций (а) и графическая интерпретация 

семейства обобщенных кривых деформирования при плоском напряженном 

состоянии (б) согласно модели С. Ю. Фиалко 

Таким образом, если в рассмотренных ранее теориях данные поверхности 

представляли бы собой гладкие непрерывные функции инвариантов тензора 

напряжений, то в рамках данной модели имеется разрыв по линии чистого сдвига. 

При этом завышается несущая способность в области между одноосным сжатием 

и чистым сдвигом, т.к. используется эллиптическая кривая Мизеса, проходящая в 

предельном состоянии через точки одноосных напряженных состояний. 

1.3.7 Результаты обзора существующих моделей 

Основные характеристики рассмотренных деформационных моделей 

пластичности, а также постановка требуемых характеристик разрабатываемой 

модели для неармированной каменной кладки с учетом особенностей работы 

каменных стен под статической нагрузкой, изложенных в разделе 1.1, 

представлены в Таблице 3. 
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Таблица 3 – К обзору деформационных теорий пластичности 

Характе-
ристика 

Модель 
кладки  

Тюпина [46] 

Модель 
бетона 

Гениева [10] 

Модель 
бетона 

Круглова [28] 

Модель 
бетона 

Фиалко [48] 

Предложен-
ная модель 

кладки 
Вид НДС плоское обобщенное обобщенное плоское плоское 
Переменные 
параметры 
упругости 

E (G) 
ν = const 

E (G, K) 
ν = const E, ν (G, K) E (G) 

ν = const E, ν (G, K) 

Связь между 
первыми 
инвариантами 

линейная нелинейная 
(дилатация) 

нелинейная 
(дилатация) линейная нелинейная 

(дилатация) 

Связь между 
вторыми 
инвариантами 

нелинейная нелинейная нелинейная нелинейная нелинейная 

Разупрочне-
ние – – – + + 

Разгрузка не описана линейная с E0 линейная с E0 линейная с E0 линейная по 
секущей E 

Анизотропия 
прочности + не требуется не требуется не требуется + 

Анизотропия 
упругих хар-к + не требуется не требуется не требуется – 

Зависимость 
пластичности 
от вида НДС 

– – + + 
дискретно + 

Энергия 
разрушения – – – – + 



35 

1.4 Выводы по главе. Цель и задачи диссертационного исследования 

На основании проведенного анализа нормативных документов, 

теоретических и экспериментальных работ можно сделать следующие выводы: 

1. Определена область применения разрабатываемой модели: несущие стены, 

перегородки, несущее заполнение каркасов зданий, изготовленные из 

неармированной кладки из камней правильной формы или бутовой кладки со 

слабой степенью анизотропии деформационных свойств. 

2. Выявлены особенности работы каменных стен под статической нагрузкой, 

которые должны быть отражены в разрабатываемой модели: физическая 

нелинейность, разносопротивляемость, анизотропия прочности, анизотропия пост-

пикового разупрочнения, дилатация, зависимость механизмов разрушения 

каменных стен от соотношения сторон и уровня предварительного обжатия. 

3. Анализ существующих методов расчета каменных конструкций показал 

существенный разрыв между нормативными методиками расчета, основанными на 

анализе стержневых моделей, и устоявшейся практикой инженерных расчетов в 

программных комплексах на пространственных моделях из плоских типов 

конечных элементов. 

4. Показано, что применение макромоделирования и метода конечных 

элементов, является наиболее эффективным для анализа напряженно-

деформированного состояния на уровне несущих конструкций зданий и 

сооружений. Применение более простого метода макроэлементов затруднено для 

моделей со сложной геометрией. Более сложные микромодели и многоуровневые 

модели могут быть использованы для определения макромеханических 

характеристик. 

5. Применение деформационной теории пластичности в отличие от теории 

пластичности типа течения позволяет использовать более сложные анизотропные 

критерии прочности с множественными сингулярными ребрами и вершинами. 

6. Аналитический обзор известных деформационных теорий пластичности 

показал, что модели для каменной кладки существенно уступают известным 

моделям для бетона. Комбинация известных соотношений для бетона и 
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железобетона позволит создать модель, отражающую основные конструктивные 

особенности работы каменных стен при плоском напряженном состоянии. 

По результатам проведенного анализа формулируется цель 

диссертационного исследования: разработать модель деформирования 

неармированной каменной кладки для расчета стен при плоском напряженном 

состоянии с учетом физической нелинейности и анизотропии прочности на основе 

деформационной теории пластичности. 

Для достижения поставленной цели требуется решить ряд задач: 

1. Выявить особенности напряженно-деформированного состояния и 

механизмы разрушения каменных стен при плоском напряженном состоянии путем 

анализа теоретических и экспериментальных работ других авторов. 

2. Разработать критерий прочности каменных кладок с учетом анизотропии 

при плоском напряженном состоянии. 

3. Разработать модель деформирования неармированной каменной кладки 

при плоском напряженном состоянии с учетом физической нелинейности и 

анизотропии прочности на основе деформационной теории пластичности. 

4. Составить алгоритмы расчета и написать компьютерную программу, 

реализующую модель на базе метода конечных элементов для расчета стен. 

5. Провести численные расчеты каменных стен при совместном действии 

вертикальных и горизонтальных сил и сравнить полученные результаты с 

экспериментальными данными и моделями других авторов. 
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ГЛАВА 2  

ДЕФОРМАЦИОННАЯ МОДЕЛЬ ПЛАСТИЧНОСТИ  

КАМЕННОЙ КЛАДКИ ПРИ ПЛОСКОМ НАПРЯЖЕННОМ  

СОСТОЯНИИ С УЧЕТОМ АНИЗОТРОПИИ 

2.1 Механизмы разрушения при плоском напряженном состоянии 

Плоское напряженное состояние характеризует работу многих 

конструктивных элементов каменных зданий: стен при неравномерных осадках 

основания, поперечных стен при ветровых и сейсмических нагрузках, заполнений 

каркасов при перекосе этажных ячеек, перегородок на податливых плитах 

перекрытий и других конструкций. 

В работе [80] было проведено аналитическое исследование стен из 

неармированной каменной кладки с использованием формул европейских 

стандартов [53, 54] для оценки прочности в плоскости и способности стен к 

горизонтальному смещению. При сопоставлении результатов расчетов 

аналитических моделей по формулам [53, 54] и МКЭ-моделей были обнаружены 

значительные несоответствия. Также проведено параметрическое исследование и 

проведена оценка влияния: предварительного сжатия, отношения высоты к длине 

стены и геометрии кладочных блоков на прочность в плоскости, начальную 

жесткость, смещение, соответствующее пиковой нагрузке, и предельное смещение. 

Анализ с помощью МКЭ показал, что данные параметры значительно влияют на 

общую реакцию в плоскости, включая прочность, предельные смещения и 

механизмы разрушения. 

При совместном действии вертикальной N и горизонтальной Q сил можно 

выделить четыре основных механизма разрушения каменных стен, представленные 

на Рисунке 7, a: 

− разрушение нормального сцепления (растяжение) Rt; 

− разрушение касательного сцепления (сдвиг) Rsq; 

− разрушение по косой штрабе Rtq (главные растягивающие напряжения); 

− разрушение от раздробления (сжатие) R. 
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(а) Источник: составлено автором (б) Источник: составлено автором 

а – локализация механизмов разрушения; б – зависимость предельной 

относительной поперечной силы 𝑄𝑄� от относительной сжимающей силы 𝑁𝑁� 

Рисунок 7 – Механизмы разрушения каменных стен  

при плоском напряженном состоянии 

Тип реализуемого механизма разрушения зависит от соотношения Q/N, а 

также геометрии стены, а именно отношения r = h/l, где h, l – высота и длина стены 

соответственно. На Рисунке 7, б, представлена зависимость предельной 

относительной поперечной силы 𝑄𝑄� от относительной сжимающей силы 𝑁𝑁� на 

основе формул СП 15.13330-2020 [1]. Аналогичная зависимость рассмотрена в 

работе [81] при сравнении методик расчета стен по различным нормативным 

документам зарубежных стран. 

Из анализа представленного графика можно установить, что разрушение от 

сдвига по неперевязанному сечению характерно для коротких стен при малом 

уровне обжатия силой N. При бо́льших уровнях обжатия и для стен промежуточной 

высоты разрушение происходит по косой штрабе и обусловлено действием 

главных растягивающих напряжений. Высокие стены разрушаются 

преимущественно от внецентренного сжатия. 

Описанная модель основана на методе предельных усилий и характеризует 

поведение материала каменной кладки на уровне целой конструкции по 

стержневой аналогии, т.е. предполагает определенное распределение напряжений 
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и их ориентацию относительно растворных швов, исходя из гипотезы плоских 

сечений. Данный подход не позволяет в полной мере оценить истинное 

напряженно-деформированное состояние стен, особенно в случае сложных 

геометрических форм (наличия проемов) и нерегулярного расположения несущих 

элементов каркаса. В связи с этим требуется переход от описания глобальной 

прочности конструкции к локальной прочности представительного фрагмента 

кладки. Этот переход не может быть осуществлен без усложнения критериев 

прочности, однако их следует искать в представлении базовых механизмов 

разрушения, описанных ранее, как функций параметров плоского напряженного 

состояния. 

2.2 Критерий прочности при плоском напряженном состоянии 

2.2.1 Известные критерии прочности и системы координат 

Существующие критерии прочности можно условно разделить на 

полиномиальные и критерии по виду разрушения. Полиномиальные критерии 

представляются в виде некоторой функции (малого набора функций), наилучшим 

образом аппроксимирующей экспериментальные данные. Такие критерии 

используются преимущественно в теориях течения поскольку имеют наименьшее 

количество не дифференцируемых точек. В работах типа [84, 86] для каменной 

кладки используется объединенная поверхность текучести, состоящая из 

ортотропных критериев типа Хилла в области сжатия и Ренкина в области 

растяжения и растяжения-сжатия. Критерий плохо описывает экспериментальные 

данные Пейджа [97, 98, 99] в области растяжения-сжатия. В работе [107] 

предложена аппроксимация поверхности разрушения каменной кладки при 

двухосном напряжении с помощью кубического тензорного полинома. Критерий 

плохо описывает экспериментальные данные Пейджа [98] в осях главных 

напряжений при их ориентации под углом 45° к осям ортотропии. Наиболее точное 

решение в рамках полиномиального подхода представлено в работе [63], где для 

определения неизвестных весовых коэффициентов некоторой функции были 

использованы нейронные сети с обратным распространением (BPNN). Описанные 
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выше критерии прочности отличают недостаточная гибкость для анизотропного 

материала типа каменной кладки, либо чрезмерная неопределенность параметров 

моделей, что затрудняет их применение для кладок, отличающихся от тех, на 

которых проводилась валидация. 

Критерии прочности по виду разрушения формулируются путем выявления 

механизмов разрушения материала и их комбинации. Таким образом, критерий 

прочности представляется в виде кусочно-заданной функции, затрудняющей ее 

применение для нелинейных расчетов по теории пластичности типа течения. В 

работе [62] используется три критерия прочности: максимальных деформаций при 

растяжении, максимальных напряжений при сжатии, модифицированный Мора-

Кулона при сдвиге. Использование критерия максимальных деформаций по 

данным Пейджа [97] оправдано для угла 45°, однако приводит к завышению 

несущей способности при прочих ориентациях главных напряжений. В работе [11] 

представлен критерий, в котором для описания сдвиговых характеристик 

используется два независимых критерия Кулона-Мора, экспериментальное 

определение параметров для которого по перевязанному сечению затруднено. 

Наиболее комплексное решение в рамках данного подхода описано в работе [82], в 

которой рассматривается девять механизмов разрушения. Описанные выше 

критерии отличает более широкая область применения, т.к. они описывают 

определенные механизмы разрушения кладки, однако с увеличением количества 

определяющих уравнений усложняется определение границ их области 

определения для реализации в физически нелинейных моделях. 

Приведенный выше обзор показывает, что в настоящее время разработана 

большая номенклатура критериев прочности каменной кладки при плоском 

напряженном состоянии. Каждый из этих критериев отвечает требованиям 

определенной процедуры расчета (линейной или нелинейной), однако отсутствует 

модификация критерия прочности для физически нелинейных моделей 

деформационного типа. Требуется разработка ортотропного критерия прочности 

неармированной каменной кладки в координатах инвариантов напряженного 
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состояния и вида напряженного состояния для физически нелинейных моделей 

нелинейно-упругого тела. 

При описании того или иного критерия рационально выбрать систему 

координат, в которой он будет представлен в наиболее простом виде. Исходя из 

этого, определяющие уравнения предлагаемого в работе критерия прочности будут 

формулироваться в одной из следующих координатных систем: нормальное и 

касательное напряжение на площадке, параллельной горизонтальным растворным 

швам кладки, система σn – τn; напряжения на главных площадках, система σ1 – σ2; 

напряжения на площадках σ1–τ12. 

В деформационных теориях пластичности, представляющих собой модели 

нелинейно-упругого тела, постулируется пропорциональность между девиаторами 

тензоров напряженного и деформированного состояний. При этом коэффициент 

пропорциональности является некоторой функцией напряженного и 

деформированного состояния, определяющей нелинейное поведение материала 

под нагрузкой. Для разносопротивляющихся материалов типа каменной кладки он 

также зависит от вида напряженного состояния. 

Для описания напряженного состояния могут быть использованы следующие 

инварианты: касательное напряжение на октаэдрической площадке τoct, нормальное 

напряжение на октаэдрической площадке (среднее напряжение) σoct, определяемые 

при плоском напряженном состоянии по уравнениям: 
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τ = σ − σ + σ + σ
 (30) 

Тогда вид напряженного состояния для случая плоского напряженного 

состояния однозначно может быть определен с использованием инвариантного 

параметра ξ, равного: 

 , 2 2 2oct

oct

σ
ξ = − ≤ ξ ≤

τ
. (31) 

Данный параметр используется при описании деформационной модели 

пластичности бетона в работе [16] и принимает характерные значения: левая 
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граница диапазона соответствует двухосному сжатию, а правая – двухосному 

растяжению. 

 После формулирования критерия прочности в исходных координатах 

следует перейти к координатам вида напряженного состояния и одного из 

инвариантов напряженного состояния, например, к системе ξ – τoct. 

2.2.2 Критерий прочности при сжатии 

Области двухосного сжатия соответствует третий квадрант в системе 

координат главных напряжений, а также диапазон 2 2 1− ≤ ξ ≤ − , где левая граница 

соответствует двухосному сжатию, а правая – одноосному. 

При существующей сложности в определении предела прочности на 

двухосное сжатие каменной кладки, а также имеющихся экспериментальных 

данных Пейджа [98], согласно которым двухосное сжатие при σ1 = σ2 не приводит 

к существенному повышению прочности, рационально принять ортотропный 

критерий Ренкина или Цая-Хилла, которые также были использованы в работах 

[11, 62, 76] и [84, 86] соответственно. Поскольку использование критерия Цая-

Хилла приводит к занижению несущей способности при угле 45° [85] (при его 

калибровке с использованием прочности на одноосное сжатие под углом 45°), а 

также того, что в рамках разрабатываемого критерия разрушение от сдвига 

описывается отдельным законом, рационально принять упрощенную 

квадратичную аппроксимацию по типу Цая-Хилла, но без учета влияния сдвига с 

переменными параметрами прочности на одноосное сжатие в осях главных 

напряжений: 
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c c c cr r r r
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где rc2, rc3 – пределы прочности вдоль каждого из главных направлений, 

определяемые в зависимости от ориентации главных напряжений относительно 

осей анизотропии: 
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где Rcn, Rct – пределы прочности при одноосном сжатии перпендикулярно и 

параллельно горизонтальным растворным швам соответственно; 

α – угол между главным напряжением σ1 и направлением горизонтальных швов 

кладки. 

С учетом уравнений (30), (31) критерий прочности (32) может быть 

представлен в системе координат ξ–τoct на интересующем интервале 2 2 1− ≤ ξ ≤ − : 
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2.2.3 Критерий прочности при растяжении 

Области двухосного растяжения соответствует первый квадрант в системе 

координат главных напряжений, а также диапазон 1 2 2≤ ξ ≤ , где левая граница 

соответствует одноосному растяжению, а правая – двухосному. 

Растяжение кладки остается малоизученным вопросом. Наибольшее 

количество численных и экспериментальных данных получено для условий 

одноосного растяжения; эти данные, в частности [64, 109], выявили различные 

механизмы разрушения вдоль швов кладки. Наиболее полные экспериментальные 

данные по двухосному растяжению были проведены Пейджем [97], по результатам 

которых были сформулированы известные критерии прочности. С учетом 

имеющихся данных и большой неопределенностью в построении теории 

разрушения кладки при растяжении предлагается аппроксимация в виде 

эллиптической функции по типу Норриса-МакКиннона [95], но без учета влияния 

сдвига, как это было принято ранее для критерия прочности при сжатии. Тогда 

критерий на растяжение может быть записан с переменными параметрами 

прочности на одноосное растяжение в осях главных напряжений: 
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где rt1, rt2 – пределы прочности вдоль каждого из главных направлений, 

определяемые в зависимости от ориентации главных напряжений относительно 

осей анизотропии: 
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где Rtn, Rtt – пределы прочности при одноосном растяжении перпендикулярно 

(нормальное сцепление) и параллельно горизонтальным растворным швам 

соответственно. 

С учетом уравнений (30), (31) критерий прочности (35) может быть 

представлен в системе координат ξ – τoct на интересующем интервале 1 2 2≤ ξ ≤ : 
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2.2.4 Критерии прочности при сдвиге 

Области сдвига соответствует второй квадрант в системе координат главных 

напряжений, а также диапазон 1 2 1− ≤ ξ ≤ , где левая граница соответствует 

одноосному сжатию, а правая – растяжению, значению ξ = 0 соответствует чистый 

сдвиг. 

Разрушение при действии главных напряжений разных знаков для 

анизотропного материала кладки следует рассматривать с нескольких позиций. С 

одной стороны, при малых и близких к 90° углах α требуется обеспечить 

пересечение кривой функции критерия с одноосными пределами прочности на 

растяжение и сжатие. С другой стороны, экспериментальные данные Пейджа [98, 

99], а также других авторов [105, 114] показывают значительное снижение 

предельной прочности на одноосное сжатие при приближении угла α к углу 

внутреннего трения по шву кладки. В связи с этим в составе объединенного 

критерия прочности предлагается рассматривать два механизма разрушения от 

сдвига. 
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Первый (St) связан с действием главных напряжений разных знаков и не 

зависит от угла α. Данный критерий соответствует критерию Кулона-Мора, в 

котором предельная прямая касается двух предельных окружностей в системе 

координат σ1 – τ12 и полностью определяется значениями пределов прочности на 

одноосное сжатие и растяжение. В системе координат главных напряжений данный 

критерий можно представить в виде (при σ1 ≥ σ2): 

 ( )1
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σ ≤ σ +  (38) 

С учетом уравнений (30), (31) критерий прочности (38) может быть 

представлен в системе координат ξ – τoct на интересующем интервале 1 2 1− ≤ ξ ≤ : 
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Второй критерий прочности (Sc) связан с действием касательных 

напряжений на площадке, параллельной горизонтальным швам кладки и является 

модификацией критерия Манна-Мюллера [88], который предлагается 

параметризировать относительно одноосного предела прочности на растяжение 

(нормальное сцепление) и предела прочности при сжатии под углом 45° к 

горизонтальным швам кладки Rc45 или предела прочности на диагональное 

раскалывание (действие главных растягивающих напряжений) Rtw. Критерий 

формулируется в системе координат σn – τn в следующем виде (рис. 1 б): 

 ( )tw
n tn tn n

tn

R R R
R

τ ≤ − σ  (40) 

где Rtw – предел прочности при чистом сдвиге, определяемый при испытании на 

диагональное раскалывание или косвенно по пределу прочности Rc45 на сжатие 

образцов с ориентацией швов под углом 45° к направлению нагрузки по формуле: 

 
( )

45

452 2
tn c

tw
tn tn c

R RR
R R R

=
+

 (41) 

Критерий прочности (12) в осях главных напряжений σ1 – σ2 равен (при 

σ1 ≥ σ2): 
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( )( )( )2 2 2 22 3

1 2 2 2 2

sin sin 4 sin 11
2cos 2 sin cos

tw tw tn tntw

tn tn

R R R RR
R R

α α + σ − α −
σ ≤ σ − +

α α α
, (42) 

С учетом уравнений (30), (31) критерий прочности (40) может быть 

представлен в системе координат ξ – τoct на интересующем интервале 2 2 1− ≤ ξ ≤ : 

 

2

4

3

tw tw

tn tn
oct tw

R Ra b b
R R

R
a

 
+ − 
 τ ≤ , (43) 

где ( )2 2 22 sin 2 , 3 2 cos2a b= − ξ α = ξ − − ξ α . 

2.2.5 Валидация критерия прочности 

Критерий прочности представляет собой поверхность пиковых 

октаэдрических касательных напряжений τoct,u над плоскостью ξ – α (Рисунок 8, а) 

и формулируется в виде кусочно-заданной функции на интервалах: 

− при 2 2 1− ≤ ξ ≤ −  минимум из (34) «С-критерий» и (43) «Sc-критерий»; 

− при 1 2 1− ≤ ξ ≤  минимум из (39) «St-критерий» и (43) «Sc-критерий»; 

− при 1 2 2≤ ξ ≤  (37) «T-критерий». 

  
(а) Источник: составлено автором (б) Источник: составлено автором 

Рисунок 8 – Поверхность критерия прочности τoct,u = f (ξ, α) (а) и срез поверхности  

при α = 45° (б) для экспериментальных данных Пейджа [97, 98, 99] 
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Валидация предложенного критерия прочности проведена на 

экспериментальных данных Пейджа, которые для разного вида напряженного 

состояния получены из следующих источников: 

− при 2 2 1− ≤ ξ ≤ − : сжатие-сжатие, числовые из [63] по данным [98]; 

− при 1 2 1− ≤ ξ ≤ : сжатие-растяжение, числовые из [63] по данным [99]; 

− при 1 2 2≤ ξ ≤ : растяжение-растяжение, числовые [63] по данным [97]. 

Параметры, заданные для построения аналитической модели, сведены в 

Таблицу 4. В таблице представлены «экспериментальные» данные для параметров, 

определенных как среднее арифметическое соответствующих экспериментальных 

значений и «оптимальные» данные, обеспечивающие наименьшее 

среднеквадратичное отклонение по всей выборке. Рисунки 8–10 построены с 

использованием «оптимальных» параметров. Результаты обсуждаются далее; их 

сравнение представлено на Рисунках 11–12. 

Таблица 4 – Параметры для построения критерия прочности 

Параметр Rcn Rct1 Rtn Rtt R45 

Среднее, МПа 7,56 9,45 0,29 0,50 5,04 
Коэффициент 
вариации, V, д. ед. 0,06 0,06 0,282 0,282 0,15 

Доверительный 
интервал 95%, МПа (6,86; 8,26) (8,55; 10,35) (0,09; 0,49) 2 (0,16; 0,84) 2 (4,03; 6,05) 

Оптимальное, МПа 7,56 9,45 0,24 0,44 4,00 

Примечания: 
1. вычислено аналитически с коэффициентом анизотропии 1/0,8 относительно Rcn. 
2. вычислено аналитически при осреднении коэффициентов вариации для испытаний 
растяжение-сжатие и количестве опытов в серии равном трем. 

 

Качественная оценка аппроксимации экспериментальных данных проведена 

путем сравнения аналитических кривых с разбросом точек данных для всех 

имеющихся ориентаций главных напряжений относительно осей ортотропии 

кладки. Полученные изображения представлены на Рисунке 8, б, для угла 45°, на 

Рисунке 9 для углов 0° и 22,5°, а также на Рисунке 10 для углов 67,5° и 90°. 

 



48 

 
Источник: составлено автором 

Рисунок 9 – Срез поверхности τu = f (ξ, α) при α = 0° и при α = 22,5° 

для экспериментальных данных Пейджа [97, 98, 99] 

 

 
Источник: составлено автором 

Рисунок 10 – Срез поверхности τu = f (ξ, α) при α = 67,5° и при α = 90° 

для экспериментальных данных Пейджа [97, 98, 99] 

Для количественной оценки качества аппроксимации на Рисунках 11–12 

показаны относительные отклонения δ средних значений экспериментальных 
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данных τoct
ex от аналитической кривой τoct

u и обозначены 95% двусторонние 

доверительные интервалы для оценки средних значений: 

 
0,05/2, 1

ex
oct

nu
oct

Vt
n−

τ
δ = ±

τ  (44) 

где V – коэффициент вариации для каждой серии; 

t0,05/2,n-1 – критическое значение критерия Стьюдента при двустороннем 

доверительном интервале с уровнем значимости 0,05 и числом степеней 

свободы n−1; 

n – количество испытаний в серии. 

Поскольку для испытаний на растяжение авторами были найдены только 

средние значения результатов, то доверительный интервал показан условно как 

средний по результатам испытаний на растяжение-сжатие. Важно отметить, что 

экспериментальные данные на растяжения-сжатие отличаются существенно 

большим разбросом значений, чем испытания на сжатие, что отражается большей 

длиной доверительных интервалов. 

На Рисунке 11 представлены результаты для модели, калиброванной только 

по данным, соответствующим средним экспериментальным значениям (первая 

строка Таблицы 4). Можно отметить, что представленная модель переоценивает 

несущую способность на растяжение при углах 22,5–67,5°, а также несущую 

способность на сжатие при небольшом уровне бокового обжатия для угла 67,5°. 

Также заметно существенное отклонение экспериментальных данных одноосного 

сжатия для угла 90°, что согласно источникам [74, 85] может быть вызвано 

некорректным определением предела прочности по моменту начала 

трещинообразования в оригинальном исследовании [98]. Дополнительно вызывает 

интерес полученное большее значение предела прочности на сжатие вдоль швов, 

что в исследованиях других авторов не наблюдалось [105, 114], однако при 

соответствующей калибровке модели это не вызывает проблем, отклонение 

большего числа точек в области двухосного сжатия не превышает 95% 

доверительного интервала. 
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Источник: составлено автором 

Рисунок 11 – Относительные отклонения средних значений экспериментальных 

данных Пейджа [97, 98, 99] от критерия прочности до оптимизации 

Поскольку применение разработанной модели подразумевается на 

ограниченном объеме экспериментальных данных, автором было важно показать 

ее работу, когда параметры задаются исключительно по результатам минимального 

количества стандартизированных испытаний. 

Далее на Рисунке 12 приведен аналогичный Рисунку 11 график 

относительных отклонений со значениями параметров, полученных путем 

минимизации среднеквадратичного отклонения по всему объему выборки.  

 
Источник: составлено автором 

Рисунок 12 – Относительные отклонения средних значений экспериментальных 

данных Пейджа [97, 98, 99] от критерия прочности после оптимизации 
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В этом случае достигается пересечение большего числа доверительных 

интервалов с аналитической кривой, за исключением испытаний на одноосное 

сжатие под углом 90°, что, как уже отмечалось, может быть вызвано некорректным 

определением предела прочности кладки в оригинальном исследовании [98]. 

2.3 Эталонные кривые деформирования 

Можно выделить несколько основных типов функций для описания кривых 

деформирования (Таблица 5), в том числе для каменных кладок. Среди линейных 

функций распространены кусочно-линейные, задаваемые в виде отрезков, 

соединяющих параметрические точки, либо кусочно-линейные с малым шагом 

дискретизации, получаемые в виде табличных данных по результатам реального 

эксперимента. 

Среди нелинейных функций наибольшее распространение получили 

логарифмические функции и функции алгебраических кривых различной степени. 

В современных исследованиях появляются работы с использованием 

параметрических кривых Безье, а именно сплайнов Безье, позволяющих 

производить гладкую аппроксимацию параметрических точек, в отличие от 

использования кусочно-линейных функций. 

Также распространен подход к построению кривых деформирования в виде 

кусочно-гладких или кусочно-непрерывных функций, позволяющих раздельно 

описать поведение материала на восходящем и нисходящем участках кривой 

деформирования. 

Таблица 5 – Типы функций для описания кривых деформирования 

Линейные 
функции 

Нелинейные функции 

Аналитические (непараметрические) кривые Параметрические кривые 

Логариф-
мические 

Алгебраические кривые Кривые Безье 

Кусочно-
линейные 

2-й степени 3-й степени 4-й степени Квадратичная Кубическая 

Кусочно-гладкие Сплайн Безье С1 

Кусочно-непрерывные Сплайн Безье С0 
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Выбор аналитической зависимости для эталонной кривой деформирования 

связан с основными особенностями деформирования каменных кладок при 

одноосном сжатии, а также необходимости их трансформации для других 

напряженных состояний: 

1. Необходимость задания начального модуля деформации кладки E0, 

независимо от предела прочности материала. Данное требование обусловлено для 

изотропной модели равенству модуля E0 во всех направлениях, в отличие от 

предела прочности, который в разрабатываемой модели представлен 

анизотропным критерием прочности. 

2. Необходимость независимого задания предела прочности кладки σu, 

который должен трансформироваться в зависимости от вида напряженного 

состояния и ориентации главных напряжений относительно осей ортотропии 

кладки. 

3. Необходимость независимого задания предельной относительной 

деформации εu, которая в данной работе выражается через предельный параметр 

пластичности λ: εu = λεel, где εel = σu / E0. Данное требование обусловлено 

зависимостью кривой деформирования от вида напряженного состояния, так при 

растяжении кладка работает упруго вплоть до разрушения, а при сжатии 

наблюдается значительный участок псевдопластической работы. 

4. Необходимость независимого задания энергии разрушения каменной 

кладки Gc. Процесс деформирования материала на ниспадающем участке связан с 

ограниченной величиной энергии разрушения Gc. Разрушение образцов разного 

размера lel происходит при достижении одной и той же величины смещения δcr, а 

не относительной деформации (Рисунок 13, б). В связи с этим определяющие 

физические соотношения при разупрочнении требуется задавать либо в виде 

зависимости нагрузки от смещения, либо корректировать ниспадающий участок 

кривой σ – ε, как это показано на Рисунке 13, а, исходя из характеристического 

размера элемента lel. Данный подход предложен в рамках гипотезы размазанных 

трещин, описанной для МКЭ в модели пояса трещин Z. Bazant и B. Oh [66]. 
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Таким образом, функция для описания кривой деформирования кладки 

должна содержать четыре параметра: E0, σu, εu, Gc. 

 
 

(а) Источник: составлено автором (б) Источник: составлено автором 

Рисунок 13 – Предложенная кривая деформирования каменной кладки при 

одноосном сжатии (а) и зависимость предельной относительной деформации от 

размеров конечного элемента в рамках гипотезы размазанных трещин (б) 

В работах [39, 49, 90] представлен обзор известных функций для описания 

кривых деформирования бетона и каменной кладки. Результаты этих обзоров и 

анализа других работ для большинства типов функций, описанных в Таблице 5, 

сведены в Таблицу 6. 

Таблица 6 – Способы задания кривой деформирования 

№ 
поз. Источник Формула Интер 

вал 

Требуемые параметры кривой Кол. 
пар-в, 

шт. E0 σu εu Gc 

1 Онищик [34] 
( ) ( )( )

( )1

0 1 kE

E d

E m

−

σ = − ζ

⇒ ε = σ σ∫
 [0; εu] Нет аналитического решения для 

произвольного значения k 4 

2 СП 15 [1] ( ) ( )1,1 ln 1 1,1aε = − −ζ  [0; εu] aR R 2,64 el≈ ε  – 2 

3 Поляков [26] ( ) ( )ln 1m a mε = − −ζ  [0; εu] aR R ( ) elmλ ε  – 3 

4 
Гениев [9], 
Тюпин [46], 
Hognestad [79] 

( ) ( )
( )2

0

2

1

u

E E

σ

ε =

= σ

η

⇒ η−η

−
 [0; εu] E0 R 2 elε  – 2 

5 Eurocode 2 [52],  
CEB-FIP [51] ( )

2

1 2u
λη−η

σ = σ
+ λ − η

 [0; εu1] E0 R el elλε ≥ ε  – 3 
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6 CEB-FIP [51] См. (2.1-20) – (2.1-21) [εu1; ∞] E0 R el elλε ≥ ε  ( )f λ  3 

7 Hillerborg [78] 
( )

( )
u u

c

H

H f G

σ = σ − ε − ε

=
 [εu; ∞] E0 R elε  Gc 3 

8 Bazant, Oh [66] 
( )( )

( )
expu u s

s cf G

σ = σ − ε − ε ε

ε =
 [εu; ∞] E0 R elε  Gc 3 

9 Desayi, 
Krishnan [73] 2

2
1u

η
σ = σ

+η
 [0; ∞] E0 R 2 elε  const 2 

10 Saenz [103] ( ) 21 2u
λη

σ = σ
+ λ − η+η

 [0; ∞] E0 R 2el elλε ≥ ε  ( )f λ  3 

11 Carreira, Chu 
[71] 1

1,
1 1

u
A

A A
A −

σ η
σ = =

− +η −λ
 [0; ∞] E0 R el elλε ≥ ε  ( )f λ  3 

12 Thanoon по 
данным из [90] 3 2

A
B C D

η
σ =

η + η + η+
 [0; ∞] E0 R el elλε ≥ ε  dσ ε∫  5 

13 Клованич [31], 
Фиалко [48] ( )

( )

0
2 3

2

1
2, 1 2

1 ' 1
' ' 1

E
A B C

A C B C

C

ε
σ =

+ η+ η + η
= + λ − = −

λ −ζ
= −

ηζ η −

 [0; ∞] E0 R el elλε ≥ ε  dσ ε∫  5 

14 Teschemacher  
et al. [60] 

Кривая Безье  
2 порядка [0; ∞] E0 R el elλε ≥ ε  Gc 6 

Примечание – в таблице приняты следующие обозначения: 
0, , ,u u el u elR Eζ = σ σ η = ε ε ε = λ = ε ε , ( ) ( )ln 1 1m m mλ = − −  

 

Далее описаны модели из Таблицы 6 и их применимость к разработанной 

модели деформирования каменной кладки: 

− Поз. 1–3 представлены логарифмическими функциями. Впервые функция 

в наиболее общем виде предложена Онищиком [34] (поз. 1), исходя из линейной 

зависимости E(σ). Интегрирование дает искомую кривую деформирования, однако 

не имеет аналитического решения для произвольного значения k. В связи с этим им 

было предложено использовать значения k = 1 и m = 1,1, которые применяются в 

действующем своде правил [1] (поз. 2). Фиксированное значение m = 1,1 приводит 

к невыполнению п. 3 требований. Позднее Поляковым [26] было показано, что 

значение m = 1,1 может быть неприменимо для некоторых типов кладок и он 
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предложил использовать более общую зависимость, тогда предельное значение 

параметра пластичности может быть выражено через m: ( ) ( )ln 1 1m m mλ = − − . 

Логарифмические типы функций не содержат ниспадающего участка диаграммы 

деформирования и не могут быть применены для разрабатываемой модели; 

− Поз. 4–5 представлены алгебраическими кривыми второй степени. 

Зависимость (поз. 5) Eurocode 2 [52] и CEB-FIP [51] при λ = 2 сводится к 

зависимости (поз. 4) Гениева [9], полученной исходя из линейной зависимости E(ε) 

и которую Тюпин [46] использовал для модели каменной кладки (см. раздел 1.3.3). 

Зависимость (поз. 5) позволяет независимо определять λ, что является ее 

преимуществом, однако описывает ниспадающую ветвь только до определенного 

значения εu1. Далее в [51] предложена зависимость (поз. 6); 

− Поз. 6–8 содержат функции разных типов, но только для ниспадающего 

участка диаграммы деформирования. Если в (поз. 6) [51] скорость падения 

напряжений полностью определяется пластичностью разрушения, т.е. ( )cG f= λ , 

то в [66, 78] (поз. 7, 8) – задается как независимый параметр. При этом 

экспоненциальная зависимость (поз. 8) лучше описывает характер падения 

напряжений, в отличие от линейного разупрочнения (поз. 7); 

− Поз. 9–10 представлены алгебраическими кривыми третьей степени. 

Зависимость (поз. 10) [103] при λ = 2 сводится к зависимости (поз. 9) [73]. 

Увеличение степени позволяет описывать одной функцией кривую 

деформирования на всем диапазоне ε ∈ [0; ∞]. При этом остается проблема, 

связанная с невозможностью задания энергии разрушения независимо, т.к. 

( )cG f= λ . Аналогично справедливо для (поз. 11), [71], хотя эта зависимость более 

предпочтительна, т.к. позволяет задавать λ = 1 для описания упругой работы 

вплоть до разрушения при растяжении; 

− Поз. 12–13 представлены алгебраическими кривыми четвертой степени. 

Еще большее увеличение степени функции позволяет контролировать характер 

ниспадающего участка кривой деформирования, который в (поз. 13) [31, 48] 

задается относительными координатами на ветви разупрочнения (η′, ζ′). Для 
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определения зависимости этих параметров от энергии разрушения требуется 

провести интегрирование функции по относительным деформациям ( )dσ ε ε∫ , что 

требует задания правой границы интегрирования, а также может быть выполнено 

только численно. Стоит отдавать предпочтение зависимостям, где данная операция 

может быть проведена аналитически для ускорения расчетов; 

− Поз. 14 [60] представлена кривой деформирования на основе сплайна 

Безье. Модель лишена недостатков описанных выше моделей, однако содержит 

избыточное число параметров, а также требует задания правой границы 

интегрирования для использования энергии разрушения. 

Таким образом, отсутствует единая аналитическая функция для кривой 

деформирования, отвечающая всем вышеописанным критериям. Предлагается 

задание нелинейной кусочно-гладкой функции (Рисунок 13, а) на основе функций 

(поз. 5, 8) Таблицы 6: 

 0E
p

σ = ε , 

( )

( )( )

1 2
,

1

exp 1 ,

u

u s u

p
λ

+ λ − η
ε ≤ ε − η λ= 

  ηλ ε η− ε ε > ε  

 (45) 

где η = ε / εu, εu = λ σu / E0, σu = f (ξ, α) – из предлагаемого критерия прочности, 

λ = f (ξ, α) – предельный параметр пластичности (формула (53)), 

εs – параметр, определяемый исходя из удельной энергии разрушения Gс в 

рамках гипотезы размазанных трещин и вычисляемый по формуле: 

 
( )Г 1 2

с u u
s

u el

G
l

 λ σ ε
ε = − σ λ  

, (46) 

где Г(1/λ) = (1/λ − 1)! – значение гамма-функции для аргумента 1/λ, 

lel – характеристический размер конечного элемента. 

2.4 Основные физические соотношения 

Описанная в работе квазиортотропная деформационная теория для каменных 

кладок основана на работах [7, 9, 46, 48]. Модель расширена на случай 

ортотропного материала в сравнении с [7, 9, 48] и учитывает дилатационные 
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эффекты в отличие от [46]. В модели рассматривается обобщенное плоское 

напряженное состояние, то есть учитываются деформации из плоскости 

нагружения, возникающие за счет коэффициента поперечной деформации кладки. 

В работе [14] показано, что при статическом расчете каменных конструкций, 

кладка которых выполнена из керамического полнотелого или пустотелого (с 

пустотностью до 25%) кирпича, ее деформационные характеристики следует 

принимать такими же, как и для изотропных материалов. 

Используя нотацию Фойгта, тензоры напряжений и деформаций могут быть 

представлены в виде шестимерных векторов σ и ε соответственно. Тогда 

обобщенный закон Гука для изотропного материала может быть записан в 

матричном виде: 

 

1 0 0 0
1 0 0 0

1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

x x

y y

z z

yz yz

xz xz

xy xy

E E E
E E E
E E E

G
G

G

ε σ−ν −ν    
    ε σ−ν −ν    
   ε σ −ν −ν   =    γ τ    
    γ τ
    γ τ       

, (47) 

или в сокращенной форме: 

 =ε Sσ , (48) 

где S – матрица податливости. 

Вектор относительных деформаций ε может быть разложен на сумму 

объемной и сдвиговой составляющей: 

 
0 03 2octK G

ϕ ψ
= σ +ε δ Rs , (49) 

где δ – векторное представление единичного тензора; 

s – векторное представление девиатора тензора напряжений; 

R – диагональная матрица Рейтера; 

K0, G0 – начальные упругие характеристики; 

φ, ψ – параметры пластичности. 

Для определения параметров пластичности выдвигается ряд гипотез. 
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Гипотеза 1. Октаэдрическое касательное напряжение является непрерывной 

нелинейной функцией вида: τoct = f (γoct, ξ, α). Эта функция определяется кривой 

деформирования при одноосном сжатии (45) и может быть представлена в виде: 

 0
oct oct

G
τ = γ

ψ
, 

( )

( )( )

1 2
,

1

exp 1 ,

oct u

u s oct u
λ

+ λ − η
γ ≤ γ − η λψ = 

  ηλ γ η− γ γ > γ  

 (50) 

где η = γoct / γu, γu = λ τu / G0, τu = f (ξ, α) – из предлагаемого критерия прочности, 

λ = f (ξ, α) – предельный параметр пластичности (Гипотеза 3), 

γs – параметр, определяемый исходя из удельной энергии разрушения Gс в 

рамках гипотезы размазанных трещин, описанной для МКЭ в модели пояса трещин 

Z. Bazant и B. Oh, и вычисляемый по формуле: 

 
( )Г 1 2

с u u
s

u el

G
l

 λ τ γ
γ = − τ λ  

, (51) 

где lel – характеристический размер конечного элемента. 

Гипотеза 2. Удельная энергия разрушения является функцией вида: Gc = f (ξ, α) 

(причем Gc,min ≤ Gc ≤ Gc,max, где Gc,min соответствует области растяжения, а Gc,max – 

сжатия) и может быть получена путем аффинного преобразования функции 

критерия прочности (1 – траектория разгрузки, 2 – траектория активного 

нагружения; 

Рисунок 14, б): 

 ( ) ( ) ( ),
, u tn

c cn tn c,tn
cn

G G G G
 τ ξ α − τ

ξ α = − + τ 
, (52) 

где  2 3tn tnRτ = , 2 3cn cnRτ = ; 

Gcn, Gtn – удельная энергия разрушения при одноосном сжатии и растяжении 

перпендикулярно горизонтальным растворным швам кладки соответственно. 
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Гипотеза 3. Предельный параметр пластичности является функцией вида: λ = f (ξ, 

α) (причем 1 ≤ λ ≤ ψmax, где λ = 1 соответствует области растяжения, а λ = ψmax – 

сжатия) и может быть получено путем аффинного преобразования функции 

критерия прочности (1 – траектория разгрузки, 2 – траектория активного 

нагружения; 

Рисунок 14, б): 

 ( ) ( ) ( ),
, 1 1u tn

cn
cn

 τ ξ α − τ
λ ξ α = λ − + τ 

, (53) 

где λcn – значение коэффициента пластичности при одноосном сжатии 

перпендикулярно растворным швам, определяемое экспериментально или исходя 

из логарифмической зависимости Л. И. Онищика: λcn = −1,1ln(1/11) ≈ 2,638. 

 
 

(а) Источник: составлено автором (б) Источник: составлено автором 

1 – траектория разгрузки, 2 – траектория активного нагружения; 

Рисунок 14 – Зависимость τoct – γoct (а) и аффинные  

преобразования критерия прочности (б) 

Гипотеза 4. Нормальное октаэдрическое напряжение является непрерывной 

нелинейной функцией вида: σoct = f (εoct, γoct, ξ, α): 

 03
oct oct

K
σ = ε

ϕ
, ( ) ( )1 2oct octϕ = ϕ ε ϕ γ  (54) 

где  φ1(εoct) – определяет нелинейность объемного деформирования и принята 

аналогично (50), за исключением: η = εoct / εu, εu = λ σu / 3K0, σu = ξτu; 

φ2(γoct) – определяет дилатацию и принята по модели С. Ф. Клованича [31]: 



60 

 ( )2 exp
1oct

 ωη
ϕ γ = − − η 

 (55) 

где η – то же, что в (50), 

ω – коэффициент нарастания объемных деформаций разрыхления.  

Поскольку в рамках деформационной теории решается задача о нелинейно-

упругом теле, вместо постоянных параметров упругости, составляющих матрицу 

податливости, могут быть рассмотрены их секущие (редуцированные) значения, 

решая линеаризованную задачу упругости на каждом шаге нагружения. При этом 

деформационные зависимости, характеризующие нелинейное поведение, 

определяются обобщенными кривыми деформирования τo – γo и σo – εo. 

На основании определенных параметров пластичности могут быть 

вычислены компоненты секущей матрицы жесткости материала, а именно секущий 

модуль деформаций E и коэффициент поперечной деформации кладки ν: 

 
( ) ( )

0

0 0

3
2 1 1 2

EE =
+ ν ψ + − ν ϕ

; 
1

0 0

0 0

1 2 1 21 2
1 1

−
  ϕ − ν ϕ − ν

ν = − ⋅ + ⋅  ψ + ν ψ + ν  
 (56) 

Вопросы разгрузки в диссертационном исследовании подробно не 

рассматриваются. Принята разгрузка по секущей жесткости (1 – траектория 

разгрузки, 2 – траектория активного нагружения; 

Рисунок 14, а), что соответствует упруго-хрупкому механизму разрушения. 

2.5 Выводы по главе 

1. Разработан критерий прочности каменных кладок с учетом анизотропии 

прочности при плоском напряженном состоянии. Инвариантная форма записи 

предельной поверхности позволяет применять критерий в физически нелинейных 

моделях деформационного типа. Минимальный набор из пяти 

стандартизированных испытаний на одноосные нагружения позволяет применять 

его для широкого класса неармированных каменных конструкций. 

Формулирование критерия в виде кусочно-заданной функции на основе четырех 

механизмов разрушения, позволяет прогнозировать уменьшение несущей 

способности при углах ориентации главных напряжений, близких к углу 
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внутреннего трения. Достоверность предложенного критерия прочности 

подтверждена пересечением аналитической кривой с 95% доверительными 

интервалами экспериментальных значений других авторов. 

2. Разработана модель деформирования неармированной каменной кладки 

при плоском напряженном состоянии с учетом физической нелинейности и 

анизотропии прочности на основе деформационной теории пластичности. Учтены 

эффекты дилатации и разупрочнение при появлении и развитии трещин. Пиковые 

значения напряжений, деформаций и удельная энергия разрушения приняты 

зависящими от вида напряженного состояния и угла ориентации главных 

напряжений относительно осей анизотропии. Наличие ниспадающего участка 

кривой зависимости напряжений от деформаций позволяет моделировать 

перераспределение напряжений внутри несущей конструкции при появлении и 

развитии трещин. 

3. Для реализации численными методами физические соотношения 

приведены к определению секущих характеристик материальной матрицы 

жесткости. Полученные соотношения соответствуют структуре метода конечных 

элементов в перемещениях. 
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ГЛАВА 3  

АЛГОРИТМЫ ЧИСЛЕННОГО РАСЧЕТА КАМЕННЫХ  

КЛАДОК ПРИ ПЛОСКОМ НАПРЯЖЕННОМ СОСТОЯНИИ 

3.1 Разрешающие уравнения метода конечных элементов 

Согласно принципу виртуальных перемещений для равновесия 

механической системы, на точки которой наложены стационарные удерживающие 

идеальные связи, необходимо и достаточно, чтобы сумма виртуальных работ всех 

активных сил, приложенных к точкам системы, при любом виртуальном 

перемещении системы была равна нулю. 

Тогда для деформируемого тела, находящегося в равновесии, справедливо, 

что внутренняя виртуальная работа равна внешней виртуальной работе, равной 

сумме работ объемных fV и поверхностных fA распределенных и сосредоточенных 

f сил: 

 T T T T
V A

V V A

dV dV dAδ = δ + δ + δ∑∫ ∫ ∫ε σ u f u f u f . (57) 

При реализации расчета с использованием метода конечных элементов тело 

разбивается на конечное число областей, тогда интегралы в зависимости (57) могут 

быть переписаны в виде конечных сумм интегралов по каждому элементу. 

Поскольку в рамках работы рассматривается только плоское напряженное 

состояние, то интеграл по объему элемента может быть заменен интегралом по 

площади, также все внешние нагрузки приводятся к сосредоточенным. Тогда 

зависимость (57) перепишется в виде: 

 T T

el

el el el el el el
el elА

t dAδ = δ∑ ∑∫ ε σ u f , (58) 

где tel – толщина конечного элемента, толщина стены. 

Для решения задачи плоского напряженного состояния тело 

аппроксимируется плоскими треугольными или четырехугольными 

изопараметрическими конечными элементами (КЭ) плоского напряженного 

состояния (Рисунок 15). 
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Взятие интеграла по площади сопряжено с получением частных производных 

в глобальной системе координат (ГСК), что затруднено в связи с большой 

вариативностью расположения узлов таких конечных элементов, поэтому 

рационально перейти к интегрированию в изопараметрических координатах ζ-η 

(ИСК). 

 
Источник: составлено автором 

Рисунок 15 – Треугольный (а) и четырехугольный (б) конечный элемент,  

слева-направо: сетка КЭ в ГСК, сетка КЭ в ИСК, функции формы 

Координаты точки внутри конечного элемента могут быть выражены через 

координаты узлов в общей системе координат и координаты точки в 

изопараметрической системе координат с использованием функций формы: 

 el =x Nx , (59) 
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где функции формы для четырехугольного элемента равны: 
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( )( ) ( )( )
( )( ) ( )( )

1 2

3 4

1 1 4, 1 1 4,
1 1 4, 1 1 4;

N N
N N

= − η − ζ = + η − ζ
= + η + ζ = − η + ζ

 (60) 

для треугольного элемента равны: 

 1 2 31 , , .N N N= − η− ζ = η = ζ   

Аналогично можно установить перемещения точек внутри конечного 

элемента u по значению его узловых перемещений und: 

 el =u Nu , (61) 

 { }T1
1 1
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.  

Связь между векторами деформаций ε и перемещений u устанавливается на 

основании геометрических уравнений Коши, при обобщенном плоском 

напряженном состоянии: 
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 ε ∂ ∂ 
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 (62) 

Поскольку матрица функций формы N задана в изопараметрических 

координатах, следует перейти от дифференцирования по глобальным координатам 

к дифференцированию по изопараметрическим координатам. 

Зависимость (62) представляется в виде: 

 el =ε Bu , (63) 

где B – матрица градиента функций формы, равная: 
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где: 

 1d−=M J N , d=J NX ,  
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для треугольного и четырехугольного конечных элементов соответственно: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
1 1 1 11 1 0 1,
1 1 1 11 0 1 4

d d
− − ζ − ζ + ζ − + ζ − 

= =    − − η − + η + η − η−   
N N   (65) 

Связь между напряжениями и деформациями устанавливается на основании 

физических уравнений (обобщенного закона Гука в обратной форме), при 

обобщенном плоском напряженном состоянии с использованием изотропной или 

анизотропной материальной матрицы жесткости С: 

 el el=σ Cε , (66) 

или с учетом (63): 

 el =σ CBu . (67) 

Интеграл в левой части уравнения (58) от глобальных координат 

преобразуется к интегралу в изопараметрических координатах с учетом 

подстановки (63) и (67) следующим образом: 

 
1 1

T T T T

0 0

1 1
2 2el el el eldx dy J d d J δ = δ η ζ = δ   ∫ ∫ ∫ε σ ε σ u B CB u



 (68) 

 
1 1 1 1

T T T T

1 1 1 1
el el el eldx dy J d d J d d

− − − −

 
δ = δ η ζ = δ η ζ 

 
∫ ∫ ∫ ∫ ∫ε σ ε σ u B CB u


 (69) 

где J = det J – Якобиан. 

Вычисление интеграла (68) для треугольного элемента выполнено 

аналитически, для четырехугольного элемента – приближенно с использованием 

квадратуры Гаусса-Лежандра. Используется четыре точки интегрирования с 

координатами: [ ] [ ]1 1
3 3

1,1 ; 1,1i iη = − ζ = − , весовые коэффициенты ωi = 1, тогда 

выражение (69) можно переписать в виде суммы по всем четырем точкам 

Лагранжа: 

 
1 1

T T T T

1 1 p
J d d J

− −

   
δ η ζ = δ   

    
∑∫ ∫u B CB u u B CB u , (70) 
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Для моделирования ниспадающей ветви зависимости нагрузки от смещения 

в численную модель требуется ввести дополнительные специальные конечные 

элементы. Матрица жесткости таких элементов имеет вид: 

 

0 0
0 0

0 0
0 0

x x

y y
spr

x x

y y

k k
k k

k k
k k

− 
 −

=  − 
−  

K , (71) 

где kx, ky – жесткость в направлении осей x и y соответственно. 

В итоге уравнение (58) примет вид: 

 T T T T1
2el el spr

el p
t J t J

  
  δ + + = δ

    
∑ ∑u B CB B CB K u u f

 

 

, (72) 

 ( )el el spr
el

 
+ + =  

∑ K K K u f
 

 или =Ku f   

Тогда искомый вектор узловых перемещений находится из выражения: 

 1−=u K f , (73) 

где K – глобальная матрица жесткости, включающая граничные условия, 

f – вектор узловых нагрузок. 

3.2 Методы решения задач теории пластичности 

Нелинейная зависимость напряжений от деформаций при решении задач 

пластичности методом конечных элементов приводит к нелинейному виду 

материальной матрицы жесткости С и, соответственно, глобальной матрицы 

жесткости K. При этом решение уравнения (73) в общем случае не может быть 

найдено аналитически и требуется использовать различные итерационные или 

шагово-итерационные алгоритмы. 

Любой из описанных далее методов в широком смысле можно отнести к 

методу упругих решений, предложенному А. А. Ильюшиным, «поскольку каждое 

следующее приближение получается из предыдущего путем решения для нашего 

тела задачи теории упругости» [20]. Однако более позднее обобщение, которое дал 
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И. А. Биргер [6], относит «метод упругих решений Ильюшина» к итерационному 

методу дополнительных нагрузок (начальных напряжений). 

Можно выделить итерационные, шаговые и шагово-итерационные методы 

расчета. Шаговые алгоритмы детально не рассматриваются, поскольку отсутствие 

итераций внутри шагов ведет к накоплению ошибки приближенного решения 

относительно точного. Наиболее распространенные типы методов сведены в 

Таблицу 7. 

Таблица 7 – Методы решения задач пластичности 

Тип Наименование метода Формула Сходимость 

Итераци-
онные 

Дополнительных нагрузок 
(начальных напряжений) ( ) ( )1

0 1 1,i i i rf−
− −= − =u K f r r σ  Медленно 

Дополнительных 
деформаций 
(начальных деформаций) 

( ) ( )1
0 1 1,i i i rf−

− −= − =u K f r r ε  Медленно 

Переменных параметров 
упругости 

1
sec, 1i i
−

−=u K f  Средне 

Шаговый Шаговый ( ) 11
tan

j j j j−− ∆ ∆= +u u K f  Быстро 

Шагово-
итераци-
онные 

Ньютона-Рафсона ( ) ( )1

1 tan, 1 1
j j j j j
i i i i

−∆ ∆ ∆
− − −= + −u u K f r  Быстро 

Начальных напряжений ( ) ( )1
1 0 1

j j j j
i i i

− ∆ ∆
− −= + −u u K f r  Медленно 

Модифицированный 
Ньютона ( ) ( )1

1 tan 1
j j j j j
i i i

−∆ ∆ ∆
− −= + −u u K f r  Средне 

Метод секущих (BFGS) ( ) ( )1

1 sec, 1 1
j j j j j
i i i i

−∆ ∆ ∆
− − −= + −u u K f r  Средне 

Итерационные методы, описанные Биргером [6], позволяют решать 

нелинейные задачи за один шаг нагружения, т.е. вся нагрузка прикладывается 

сразу, а результат не зависит от пути нагружения. Такая постановка позволяет 

получать решения при простом или сходящемуся к простому нагружениях [22]. 

Простым нагружением называется такое, при котором направляющий тензор 

напряжений не изменяется при возрастании некоторого скалярного параметра; 

направляющий гиперболоид напряжений в этом случае для каждого элемента 

остается неподвижным. В противном случае нагружение называется сложным [22]. 
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Обобщенный закон Гука (66) содержит три величины, модификация которых 

позволяет нелинейную задачу теории пластичности свести к задаче нелинейной 

упругости, а затем к итерационной упругой задаче. Таким образом Биргером 

сформулированы три итерационных метода: 

1. Метод дополнительных нагрузок, в современной литературе [2] также 

называемый методом начальных напряжений. Согласно данному методу 

деформации в упругопластическом теле будут одинаковыми с деформациями в 

упругом теле, если на последнее действуют дополнительные объемные и 

поверхностные нагрузки. При решении задачи МКЭ в обозначениях, принятых в 

Таблице 7, это приводит к появлению дополнительного вектора внутренних 

узловых сил r в правой части, определяемого исходя из значений дополнительных 

внутренних напряжений σr (Рисунок 16). Достоинством метода является 

использование начальной матрицы жесткости K0, определение которой 

вычислительно затратно, при этом пересчету подлежит только вектор нагрузок в 

правой части. Недостатком метода является сравнительно низкая скорость и 

проблемы сходимости при учете процессов трещинообразования. Для увеличения 

скорости вычислений используют различные подходы, например, в работе [108] 

описано применение фиктивного пониженного начального модуля деформаций, а 

в [2] предложена комбинация данного метода с методом переменных параметров 

упругости. 

 
Источник: составлено автором 

Рисунок 16 – Метод дополнительных нагрузок 
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2. Метод дополнительных деформаций, или метод начальных деформаций. 

Согласно данному методу напряжения в упругопластическом теле будут 

одинаковыми с напряжениями в упругом теле, если в последнем имеются 

дополнительные деформации. Поскольку описанный ранее МКЭ записан в форме 

перемещений, то здесь также в правую часть зависимости вводится вектор 

внутренних узловых сил r, который в отличие от метода начальных напряжений 

определяется исходя из дополнительных внутренних деформаций εr, а не 

напряжений (Рисунок 17). Метод рационально применять в задачах с 

дополнительными деформациями, например, в задачах с температурными 

нагрузками. В остальном процесс решения аналогичен методу начальных 

напряжений и имеет те же достоинства и недостатки. Поскольку эквивалентность 

между упругой и упругопластической задачей устанавливается по напряжениям, 

а не деформациям, то при большой нелинейности упругие напряжения на первой 

итерации расчета могут превысить предел прочности материала из-за чего 

дополнительные деформации не смогут быть определены. Решение этой 

проблемы заключается также в применении фиктивного пониженного начального 

модуля деформаций, как это было показано в [108] для метода начальных 

напряжений. 

 
Источник: составлено автором 

Рисунок 17 – Метод дополнительных деформаций 

,2εr
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3. Метод переменных параметров упругости. Согласно данному методу 

решение задачи теории пластичности сводится к решению соответствующей 

задачи теории упругости с параметрами упругости, определяемыми формулой (15) 

или (56) в случае нелинейной зависимости для объемных деформаций. Метод 

основан на итерационном вычислении секущей матрицы жесткости Ksec 

(Рисунок 18), при этом вектор нагрузок f в правой части остается неизменным, в 

отличие от описанных ранее методов. К достоинствам метода относится бóльшая 

устойчивость и скорость сходимости, однако на каждой итерации требуется 

пересчет глобальной матрицы жесткости, что может быть вычислительно затратно. 

При решении задач деформационной теории пластичности метод переменных 

параметров упругости реализуется наиболее естественно, т.к. описанные ранее 

параметры пластичности характеризуют изменение именно секущих упругих 

констант материала в зависимости от деформаций, которые в МКЭ в форме метода 

перемещений вычисляются по значениям узловых перемещений на предыдущей 

итерации расчета. 

 
Источник: составлено автором 

Рисунок 18 – Метод переменных параметров упругости 

При сложном нагружении тела возникает необходимость учета истории его 

деформирования. Для этого общий процесс нагружения разбивается на малые 

шаги, на каждом из которых решается итерационная задача, что позволяет 

минимизировать отклонение численного решения от истинного.  
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В зависимости от типа используемых итерационных процедур и их 

комбинаций выделяют несколько видов шагово-итерационных алгоритмов. В 

работе [115] описаны методы, используемые в современных программных 

комплексах, в частности: 

1.  Метод Ньютона-Рафсона является одним из наиболее точных шагово-

итерационных методов решения нелинейных задач механики деформируемого 

твердого тела. На каждом шаге нагружения строится линеаризованная система 

уравнений, учитывающая текущую жесткость конструкции. Матрица жесткости 

пересчитывается на каждой итерации, что обеспечивает квадратичную сходимость. 

Однако метод требует значительных вычислительных ресурсов из-за 

необходимости повторного вычисления матрицы жесткости. Наиболее эффективно 

применяется для решения задач теории пластичности типа течения. Для 

использования в рамках деформационной теории пластичности в работе [32] 

предлагается инкрементальная формулировка, когда параметры пластичности 

определяют изменение тангенциальной, а не секущей матрицы жесткости. 

2. Метод начальных напряжений относится к классу простых шагово-

итерационных методов, в которых используется начальная матрица жесткости в 

течение всего процесса нагружения. По сути, он является расширением 

рассмотренного ранее итерационного метода начальных напряжений. На каждой 

итерации вычисляются невязки, обусловленные нелинейностью материала, 

которые корректируются как дополнительные нагрузки. Метод отличается низкой 

вычислительной стоимостью, поскольку не требует пересчета матрицы жесткости, 

но имеет линейную или более медленную сходимость. Метод эффективен для задач 

с умеренной нелинейностью, но может расходиться при значительных изменениях 

жесткости. 

3. Модифицированный метод Ньютона представляет собой компромисс 

между точностью метода Ньютона-Рафсона и вычислительной экономичностью 

метода начальных напряжений. В этом подходе матрица жесткости 

пересчитывается только в начале каждого шага или иначе, но не на каждой 
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итерации, что снижает затраты на вычисления. Однако сходимость становится 

линейной, а количество итераций может увеличиться. 

4. Метод секущих (BFGS) относится к квазиньютоновским методам, в 

которых матрица жесткости не вычисляется явно, а приближается на основе 

информации о градиентах невязок. Это позволяет сохранить высокую скорость 

сходимости, близкую к квадратичной, без полного пересчета матрицы жесткости. 

Метод особенно эффективен для задач с большим числом степеней свободы, где 

прямое вычисление матрицы жесткости затратно. Однако он требует 

дополнительной памяти для хранения аппроксимированной матрицы и может быть 

чувствителен к ошибкам округления. 

Перечень вышеописанных методов является не полным, в частности, в 

данной работе не рассмотрены такие методы, как линейный поиск (Line-Search) и 

метод контроля длины дуги (Arc-Length Method) [115], однако дается 

представление о существующих подходах к построению основных алгоритмов 

расчета. 

Независимо от применяемого метода расчета требуется установить критерий 

остановки итерационного процесса. Для этого используется скалярный параметр 

невязки, характеризующий отклонение текущего решения от предыдущего. Это 

отклонение может выражаться в узловых нагрузках, перемещениях или энергии 

системы. Поскольку в МКЭ нагрузки f и перемещения u представляют собой 

многомерные векторы x, требуется установить скалярный эквивалент, 

характеризующий их «размер»; в качестве такой величины выступает норма ||x|| 

вектора. Выбор нормы влияет на сходимость алгоритмов, устойчивость решений и 

интерпретацию ошибок. Основные виды норм сведены в Таблицу 8. 

Таблица 8 – Основные виды норм 

Наименование Формула Применение 

Октаэдрическая, L1 1 1

n
ii

x
=

=∑x  Разреженные задачи, регуляризация 

Евклидова, L2 T 2
2 1

n
ii

x
=

= = ∑x x x  Общие задачи МКЭ, линейная алгебра 
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Чебышева, L∞ max ix
∞
=x  Контактные задачи, контроль 

локальных ошибок 

Обобщенная, Lp ( )11

pn p
ip i

x
=

= ∑x  Специальные задачи оптимизации 

Взвешенная, Lp,w ( )1, 1

pn p
i ip w i

w x
=

= ∑x  Специальные задачи оптимизации 

Энергетическая T
A
=u u Ku  Нелинейная механика, динамика 

При решении задач МКЭ отдается предпочтение евклидовой норме, ввиду 

ряда причин: большая скорость сходимости, устойчивость и гладкость, L2-норма 

эквивалентна энергетической норме с единичным весовым коэффициентом 

(матрицей жесткости) и имеет ясный физический смысл. 

В данной работе принято, что итерационный процесс расчета завершается, 

когда относительная евклидова норма вектора невязки приращений перемещений 

δu, становится меньше требуемой точности решения ρ: 

 
T

T
δ δ

< ρ
u u
u u

. (74) 

3.3 Принятые алгоритмы физически нелинейного расчета 

При решении задач деформационной теории пластичности наиболее 

естественно выполнение физически нелинейного расчета методом переменных 

параметров упругости. При простом нагружении вся нагрузка может быть 

приложена сразу, однако для большей устойчивости расчета при больших 

нагрузках также рационально прикладывать нагрузку по шагам. На Рисунке 19, а, 

представлен алгоритм такого расчета и визуализация процесса его сходимости. 

В конструкциях из каменной кладки процессы трещинообразования и 

стохастический характер внешних силовых воздействий обусловливают 

отклонение траекторий нагружения от простого. В связи с этим ключевой задачей 

при выборе зависимостей между напряжениями и деформациями становится 

определение траекторий нагружения и подбор соответствующих параметров 

деформативности. Наиболее эффективными в данном случае являются методы, 

основанные на шагово-итерационных алгоритмах с последовательным 
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приложением нагрузок. При таком подходе предполагается, что траектория 

нагружения разбивается на ряд дискретных шагов. В пределах каждого шага, в 

соответствии с общими принципами теории пластичности, можно выделить 

траектории, соответствующие активному нагружению, нейтральному или 

разгрузке. 

 

 

  

(а) Источник: составлено автором (б) Источник: составлено автором 

Рисунок 19 – Шагово-итерационные алгоритмы метода переменных параметров 

упругости при простом нагружении (а) и сложном на приращениях (б) 

В отличие от классической теории пластичности, применительно к каменной 

кладке, помимо общего случая активного нагружения, необходимо учитывать 
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возможность сдвигового или объемного активного нагружения. Это обусловлено 

следующими особенностями поведения кладки: 

− зависимость между первыми инвариантами тензора напряжений и тензора 

деформаций носит нелинейный характер;  

− взаимосвязь между вторыми инвариантами девиатора напряжений и 

девиатора деформаций не подчиняется гипотезе единой кривой деформирования. 

Данные особенности обусловлены структурной неоднородностью каменной 

кладки, включающей как сам каменный материал, так и растворные швы, что 

приводит к сложному распределению напряжений и деформаций даже при 

сравнительно простых схемах нагружения. 

В источнике [28] рассматривается подход, основанный на выделении 

мгновенных поверхностей нагружения в каждой точке конструкции. При этом 

нелинейная задача переменных параметров упругости в полных перемещениях 

заменяется на аналогичную в конечных приращениях, алгоритм такого расчета и 

визуализация процесса сходимости представлены на Рисунке 19, б. 

В деформационной теории пластичности установлены виды кривых 

деформирования для всех траекторий простого нагружения, которые при плоском 

напряженном состоянии в пространстве главных деформаций (как это было 

показано на Рисунке 6, б) могут быть представлены лучом O′O на Рисунке 22, а.  

Для всех других траекторий, например, OA вид кривой не установлен. В 

работе [28] такая траектория представляется совокупностью нейтральных OB и 

меридиональных BA нагружений в пространстве главных напряжений, для которых 

установлены виды кривых деформирования. 

В отличие от [28] введено два параметра, а также эти параметры заданы по 

деформациям, а не напряжениям, что позволяет учесть полную кривую 

деформирования с ниспадающим участком. 
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(а) (б) (в) 

Источник: составлено автором 

a – решение на шаге {j – 1}; б – решение на итерации {j, i} и {j, i – 1};  

в – траектория нагружения и поверхности нагружения 

Рисунок 20 – Процедура нелинейного расчета при сложном нагружении методом 

переменных параметров упругости 

Выбор режима нагружения: активного, нейтрального или разгрузки 

устанавливается исходя из значения параметров octγ , octε , характеризующих 

положение мгновенных поверхностей сдвигового и объемного деформирования: 

 
, ,

;oct oct
oct oct

oct u oct u

γ ε
γ = ε =

γ ε
, (75) 

где ,oct octε γ  – октаэдрическая нормальная и сдвиговая деформации на заданной 

итерации расчета, которым соответствуют определенные значения ξ и α; 

( ) ( ) ( ), , 0, 3 , ,oct u oct uf Kε = ξ α = σ ξ α ⋅λ ξ α  – предельная октаэдрическая 

нормальная деформация при тех же ξ и α; 

( ) ( ) ( ), , 0, , ,oct u oct uf Gγ = ξ α = τ ξ α ⋅λ ξ α  – предельная октаэдрическая 

сдвиговая деформация при тех же ξ и α. 

Тогда уравнение, связывающее приращения напряжений и деформаций при 

активном сдвиговом и объемном нагружении, когда 1
,

j j
oct i oct

−γ > γ , 1
,

j j
oct i oct

−ε > ε , 

записывается в форме закона Гука с переменными параметрами упругости: 

 =σ Сε  (76) 

где С  – матрица жесткости с обобщенными модулями: 
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9 3 2;

3 2 3
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= ν =
+ +

, (77) 

где K , G  – обобщенные модули в зависимостях между приращениями 

напряжений и деформаций, которые могут быть выражены, исходя из 

следующего (Рисунок 22, б, в): 
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( )

1 1 1 1
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1 1 1 1
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∆τ = τ − τ ⇒ γ − γ = γ − γ

∆σ = σ − σ ⇒ ε − ε = ε − ε
, (78) 

тогда искомые обобщенные модули равны: 

 
1 1 1 1
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γ − γ γ − γ
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где индексу {j – 1} соответствуют модули и деформации на предыдущем шаге 

расчета, а индексу {j, i} – на текущем шаге расчета и текущей итерации. 

При активном сдвиговом нагружении 1
,

j j
oct i oct

−γ > γ , 1
,

j j
oct i oct

−ε ≤ ε  модули равны: 
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K G K G
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= ν =
+ +

. (80) 

При активном объемном нагружении 1
,

j j
oct i oct

−γ ≤ γ , 1
,

j j
oct i oct

−ε > ε  модули равны: 

 ( )
9 3 2;

3 2 3
KG K GE

K G K G
−

= ν =
+ +

, (81) 

При 1
,

j j
oct i oct

−γ = γ , 1
,

j j
oct i oct

−ε = ε  происходит нейтральное сдвиговое и объемное 

нагружение, 1
,

j j
oct i oct

−γ < γ , 1
,

j j
oct i oct

−ε < ε  – разгрузка. В обоих случаях параметры 

упругости остаются неизменными и равными секущим, что соответствует упруго-

хрупкому механизму разрушения: 

 ( )
9 3 2;

3 2 3
KG K GE E

K G K G
−

= = ν = ν =
+ +

, (82) 

3.4 Реализация программы на Python 

Программа написана в соответствии с парадигмой объектно-

ориентированного программирования на языке Python. UML-диаграмма 
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взаимодействия классов программы приведена на Рисунке 21. Основной 

исполняемый файл программы Main использует объекты двух основных классов: 

Mesh для описания жесткостных характеристик и граничных условий, Solver для 

формирования глобальной матрицы жесткости, вектора внешних сил и решения 

линейной задачи. 

 
Источник: составлено автором 

Рисунок 21 – UML-диаграмма взаимодействия классов программы 

Часть задач решается с использованием внешних библиотек: 

− Matplotlib: визуализация результатов расчета; 

− SciPy: численное интегрирование, решение СЛАУ; 

− NumPy: векторно-матричные операции; 

− SALib: дисперсионный анализ чувствительности. 

Алгоритм программы для физически нелинейного расчета неармированных 

каменных стен при плоском напряженном состоянии реализован внутри функции 



79 

def fem(), алгоритм работы которой представлен на Рисунке 22, а сам код 

приведен в Приложении A.1. 

 
Источник: составлено автором 

Рисунок 22 – Алгоритм функции def fem() 

Данный алгоритм может быть условно разделен на четыре основные части: 

1. Ввод данных. В качестве внешних входных данных выступают 

характеристики материала каменной кладки, состоящие из одиннадцати 

параметров. В качестве внутренних входных данных выступают геометрические 

характеристики стены и параметры построения сетки. После чего происходит 

построение конечно-элементной модели, задание условий закрепления узлов и 

формирование глобальной матрицы жесткости системы (Рисунок 23). 
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Источник: составлено автором 

Рисунок 23 – Конечно-элементная модель стены и параметры кладки 

2. Шаговая часть алгоритма реализует приложение нагрузки по шагам по 

заданному закону, после чего происходит формирование глобального вектора 

внешних сил и решение первой линейной задачи упругости. В начале каждого шага 

происходит обновление достигнутых октаэдрических деформаций для контроля 

разгрузки и сохранение промежуточных результатов по шагам.  

3. Итерационная часть алгоритма реализует процедуру редуцирования 

секущей материальной матрицы жесткости, расчет секущей элементной матрицы 

жесткости и секущей глобальной матрицы жесткости с вычислением новых 

перемещений узлов. На каждой итерации происходит контроль невязки ρ по 

перемещениям по формуле (74). При достижении требуемого уровня точности 

цикл завершается, и программа переходит к следующему шагу нагружения. 

4. Вывод данных происходит при завершении всех шагов нагружения. В 

качестве выходных данных выступают горизонтальные перемещения верха стены 

и величины реактивной силы, сохраняемые на каждом шаге. 

Расчет редуцированных жесткостных характеристик кладки (выделенный 

пунктиром блок на Рисунке 22) реализуется группой из нескольких функций, 

последовательно выполняющих операции, показанные на Рисунке 24. 

'Rcn': 10000.0,
'Rct': 8800.0,
'Rtn': 500.0,
'Rtt': 700.0,
'R45': 1600.0,
'E0': 3.5e6,
'nu0': 0.2,
'lmb_cn': 2.64,
'Gcn': 2.0,
'Gtn': 0.2,
'omega': 1.0

lx

Fy0

Fx0

nx

lyny

четырехузловые 
изопараметрические 
конечные элементы

специальные 
двухузловые 
конечные элементы

Параметры кладки:
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Источник: составлено автором 

Рисунок 24 – Алгоритм расчета секущей матрицы жесткости КЭ 

Данный алгоритм разделен на 4 основные функции: 

1. set_sss определяет текущее напряженно-деформированное состояние, а 

именно локальные, главные и октаэдрические напряжения и деформации. 

2. set_stress_mode вычисляет параметры для кривых деформирования на 

текущей траектории простого нагружения, исходя из критерия прочности кладки, 

вида напряженного состояния ξ и угла ориентации главных напряжений 

относительно осей ортотропии α. 

3. set_secant_stiffness вычисляет секущую материальную матрицу 

жесткости с учетом текущего вида кривой деформирования и достигнутой на 

предыдущем шаге деформации. Если на текущей итерации октаэдрические 

деформации превышают достигнутые ранее, то происходит активное нагружение, 

иначе – разгрузка с модулем, равным секущему на предыдущей итерации. 

4. set_element_stiffness реализует расчет матрицы жесткости конечного 

элемента, исходя из материальной матрицы жесткости. 
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3.5 Методы анализа чувствительности модели 

При создании математической модели, содержащей много входных 

параметров, необходимо рассмотрение ее с позиции «черного ящика» и оценки 

степени влияния входных параметров на выходные данные модели. В контексте 

разрабатываемой модели это можно обосновать следующим: 

1. Анизотропия коэффициентов вариации механических свойств. 

Необходимо установить влияние дисперсии входных параметров на дисперсию 

характеристик целой конструкции. 

2. Упрощение модели. Ранжирование входных параметров позволит выявить 

незначимые параметры и упростить модель. 

3. Калибровка модели. Ранжирование ускорит процесс калибровки модели 

путем изменения только значимых параметров. 

4. Выборочное повышение механических характеристик. Повышение 

наиболее значимых характеристик и уменьшение дисперсии их значений позволит 

наиболее оптимально разрабатывать материалы под заданные виды напряженных 

состояний для заданных конструкций. 

5. Оптимизация конструкции. Алгоритмы оптимизации наряду с моделями 

чувствительности позволят подобрать наиболее оптимальные параметры для 

заданной конструкции, исходя из минимизации ее массы, стоимости или других 

параметров. 

Среди наиболее простых методов анализа чувствительности можно выделить 

метод One-at-a-Time (OAT), заключающийся в последовательном изменении по 

одному фактору за раз и оценке его влияния на выходной результат. Несмотря на 

свою простоту, метод не позволяет полностью исследовать пространство 

параметров, поскольку не учитывает одновременное изменение входных 

переменных и, соответственно, не может быть применен для нелинейных моделей, 

к каковым относится и разработанная. 

Для нелинейных моделей наиболее рационально применение методов на 

основе дисперсионного анализа чувствительности, они исследуют все 

пространство параметров и учитывают их взаимодействие. Наиболее полным с 



83 

точки зрения получаемой информации можно назвать метод Соболя [43, 45]. Он 

дает точную количественную оценку вклада каждого параметра и учитывает 

взаимодействия между параметрами, однако требует большого числа вычислений 

и неэффективен для моделей с очень большим числом параметров. 

Альтернативой может служить метод Морриса [93], который совместно с 

модификацией [70] позволяет оптимально исследовать все пространство 

параметров за меньшее количество симуляций (Таблица 9). Метод дает только 

качественную оценку взаимодействия параметров, в отличие от метода Соболя, 

однако позволяет ранжировать параметры по степени влияния. При валидации 

разработанной модели метод Морриса является наиболее оптимальным, т.к. 

количественная оценка не может быть проведена ввиду отсутствия 

экспериментальных данных о дисперсии всех входных параметров модели. 

Таблица 9 – Рассмотренные методы анализа чувствительности 

Метод Тип анализа Взаимодействие Требуемое количество 
симуляций 

One-at-a-Time (OAT) Локальный нет N = k + 1 

Метод Морриса [70, 93] Глобальный качественно N = r (k + 1), где r = 10÷50 

Метод Соболя [43, 45] Глобальный количественно N = n (k + 2), где n = 1000÷10000 

Метод Морриса основан на вычислении элементарных эффектов EEi для 

каждого параметра и последующей статистической обработке этих эффектов. 

Пространство параметров xi, i = 1…k, после нормировки разбивается на p 

уровней в диапазоне [0, 1]. Затем в этом пространстве строится r случайных 

траекторий. На каждой траектории поочередно изменяется один параметр на 

величину Δ = p / 2(p − 1). В работе [70] предложено корректировать выбор 

траекторий r, максимизируя суммарное евклидово расстояние между ними, что 

позволяет равномернее покрыть пространство параметров в отличие от случайного 

выбора. После этого для каждой траектории вычисляются элементарные эффекты 

EEi: 

 ( ) ( )1 1, , , , , , , ,
,i k i k

i

f x x x f x x x
EE

+ ∆ −
=

∆
   

 (83) 
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где f (x) – исследуемая функция. 

При валидации модели в качестве выхода исследуемой функции f (x) 

принимаются скалярные результаты МКЭ-расчета: максимальная горизонтальная 

сдвигающая сила и работа этой силы на перемещении верха стены, численно равная 

интегралу зависимости горизонтальной силы от смещения. 

После производится статистическая обработка элементарных эффектов, 

путем вычисления модифицированного [70] абсолютного среднего элементарных 

эффектов μi
*, характеризующего степень влияния параметра: 

 ( )*

1

1 ,
r

j
i i

j
EE

r =

µ = ∑  (84) 

и стандартного отклонения элементарных эффектов σi, характеризующего 

нелинейность влияния параметра или его зависимость от других: 

 ( )( )2

1

1 r
j

i i i
j

EE
r =

σ = −µ∑  (85) 

В данной работе анализ чувствительности проведен методом Морриса [93], 

реализованного в библиотеке SALib с учетом модификации [70]. При количестве 

параметров k = 11, количестве траекторий r = 20 и числе уровней p = 4 общее число 

симуляций, требуемых для анализа, составило N = r (k + 1) = 240. 

3.6 Выводы по главе 

1. Описаны основные разрешающие уравнения метода конечных элементов 

и методы решения нелинейных задач. Для разработанной программы принят 

шагово-итерационный метод с процедурой переменных параметров упругости. 

2. Предложен метод физически нелинейного расчета с переменными 

параметрами упругости для учета сложного непропорционального нагружения. 

Определяющие соотношения построены в деформациях, что позволяет проводить 

расчеты, используя полную кривую деформирования с ниспадающей ветвью. 

3. Составлены алгоритмы расчета и написана компьютерная программа, 

реализующая модель на базе метода конечных элементов для расчета стен. 

Программа написана согласно современным подходам объектно-
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ориентированного программирования. Показано взаимодействие классов 

программы, их атрибуты и методы, реализующие расчет. Основной алгоритм 

реализует шагово-итерационную процедуру физически-нелинейного расчета. 

Определение секущих характеристик материала на каждой итерации вынесено в 

отдельный класс, связанный с материальными характеристиками, и описано в 

методе, реализующем процедуру переменных параметров упругости. 

4. Показана необходимость проведения анализа чувствительности 

разработанной модели. Проведен краткий обзор известных методов анализа 

чувствительности. В качестве основного принят метод Морриса, позволяющий 

проводить ранжирование параметров по степени влияния на выходные данные 

модели и оценивать нелинейность их взаимодействия. В качестве скалярных 

выходных данных для оценки приняты максимальная горизонтальная сила и работа 

этой силы на горизонтальном смещении верха стены, которые репрезентативно 

описывают поведение конструкции каменной стены под нагрузкой. 
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ГЛАВА 4  

ВАЛИДАЦИЯ ЧИСЛЕННОЙ МОДЕЛИ 

4.1 Характеристики образов стен 

Валидация разработанной модели выполнена путем сравнения численных 

данных с результатами экспериментальных исследований неармированных 

кирпичных стен при совместном действии вертикальных и горизонтальных сил. 

Испытания проведены в Техническом университете Эйндховена в 

Нидерландах коллективом авторов A. T. Vermeltfoort, C. F. P. Naninck, 

T. M. J. Raijmakers [101, 112]. Эти исследования являются международным 

эталоном экспериментальных исследований каменных стен. Как будет показано 

далее, в оригинальном исследовании недостаточно данных о макромеханических 

характеристиках кладки, однако к настоящему времени другими авторами был 

предложен ряд моделей (Таблица 10), в частности, микромоделей, которые 

косвенно позволили их установить. 

Таблица 10 – Другие численные модели, валидированные на данных [101, 112] 

Авторы модели, ссылка Год Тип модели 

Lourenco et al. [87] 1997 Упрощенная микромодель, МКЭ 

G. Milani [91] 2011 Двухуровневая модель, МКЭ 

Pela et al. [100] 2013 Ортотропная макромодель, МКЭ 

Petracca et al. [102] 2015 Двухуровневая модель, МКЭ 

Abdulla et al. [58] 2017 Упрощенная микромодель, МКЭ 

Fu et al. [75] 2018 Ортотропная макромодель, МКЭ 

Bilko et al. [67] 2020 Ортотропная макромодель, МКЭ 

Pulatsu et al. [104] 2020 Дискретная микромодель, МДЭ 

D’Altri et al. [57] 2021 Двухуровневая адаптивная модель, МКЭ 

Teschemacher et al. [60] 2023 Ортотропная макромодель, МКЭ 

 

Согласно данным оригинального исследования образцы стен выкладывались 

из кирпичей двух типов с условными обозначениями J и V. Для испытания кирпича 
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на сжатие использовали образец из пяти целых камней с плоскими гранями сверху 

и снизу. Образцы для испытания нормального сцепления состояли из двух 

половинок кирпича и шва. Характеристики прочности сведены в Таблицу 11. 

Для кладки использовался одинаковый раствор для обоих типов кирпича: 

цемент, известь, песок в объемных частях 1:2:9. Дозировали по весовым частям 

1:1:10,1 (ц:и:п). Через 28 дней его средняя прочность на сжатие составила 2,79 

МПа, а средняя прочность на растяжение при изгибе – 1,86 МПа [101]. 

Таблица 11 – Экспериментальные данные о материалах [101]  

Параметр Кирпич Joosten (J) Кирпич Vijfeiken (V) 

Тип формования 
Пластическое 
формование 
(strengperssteen) 

Полусухое прессование 
(vormbaksteen) 

Класс прочности B4 B3 

Поверхности Нешлифованный Шлифованный 

Размеры, мм 204×98×50 208×98×50 
Средняя прочность на сжатие, МПа 
(CV, д.е.) (образец: 5 целых камней) 11,73 (0,11) 8,95 (0,07) 

Средняя прочность нормального 
сцепления, МПа (CV, д.е.) (образец: 
две половинки кирпича и шов) 

0,24 (0,37) 0,13 (0,45) 

Начальный модуль деформаций стен 
при обжатии 1,2 МПа, МПа 8000 4000 

Начальный модуль деформаций 
малых образцов из 5 целых кирпичей 
при обжатии 1,0 МПа, МПа 

10000 4000 

 

Испытания проводились на двух типах стен, отличающихся геометрией: 

тип D – сплошная стена; тип G – стена с отверстием, моделирующим оконный 

проем. Схемы образцов представлены на Рисунке 25. 

В работе [101] проведено исследование кирпичных стен при одном уровне 

предварительного обжатия. Позднее в работе [112] для сплошных стен (тип D) 

проведены дополнительные испытания при других уровнях предварительного 

обжатия для кладок на кирпичах типа J; эти испытания стали базой для валидации 

разработанной модели. Недостающие макромеханические характеристики были 

взяты из результатов работ других авторов, представленных в Таблице 10. 
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Источник: составлено автором по данным [101] 

Рисунок 25 – Типы образцов стен 

4.2 Описание установки и принятой расчетной модели 

Испытаниям подвергались кирпичные стены длиной 0,99 м, высотой 1 м и 

толщиной 0,1 м (Рисунок 25). Схема экспериментальной установки представлена 

на Рисунке 26, а. Образцы поршнями 2, 3 и 4 нагружались усилием 

предварительного обжатия, после чего фиксировались, предотвращая поворот 

верхней грани стены. Затем образец испытывался на сдвиг путем приложения 

горизонтальной нагрузки поршнем 1. Поскольку верхняя балка была закреплена от 

поворота, это приводило к появлению изгибающего момента в верхней и нижней 

гранях стены при нагружении горизонтальной силой. В процессе всего испытания 

фиксировались усилия горизонтальной нагрузки Fx в поршне 1, вертикальные 

усилия в поршнях 2–4: Fy2, Fy3, Fy4, а также горизонтальное смещение верха стены. 

Горизонтальная нагрузка прикладывалась равномерно по всей длине верхней грани 

стены путем устройства соответствующего узла сопряжения с верхней стальной 

балкой. 

Расчетная модель (Рисунок 26, б) должна корректно отражать граничные 

условия экспериментальной установки и условия нагружения, для этого было 

реализовано следующее: 

1. Стена разбивается равномерной сеткой четырехузловых конечных 

элементов Kel. На верхней грани стены узлы дублируются и соединяются со своими 

дубликатами специальными конечными элементами 2D-пружин Kspr, узлы этих 
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пружин, не принадлежащие стене, закрепляются от смещения по всем координатам 

X, Y. Нижние узлы стены также закрепляются от смещения по всем координатам 

X и Y. 

 

(а) Источник: составлено автором по данным [101] (б) Источник: составлено автором 

Рисунок 26 – Схема экспериментальной установки (а) и расчетная модель (б) 

2. Верхняя балка не моделируется явно. Для исключения смещения по Y и 

поворота верхней грани стены задается большая вертикальная жесткость пружин 

ky, в несколько раз превышающая жесткость стены на одноосное сжатие, 

ky = 1012 кН/м. Горизонтальная жесткость пружин назначается из необходимости 

получения ниспадающей ветви зависимости нагрузки от смещения для стены и 

принята равной kx = 106 кН/м. 

3. Внешние нагрузки задаются в программе как внешние сосредоточенные 

силы Fx и Fy, которые распределяются равномерно на верхние узлы стены 

нагрузками fi по грузовым площадям. Значение горизонтальной силы Fx 

подбирается в ходе расчета из условия получения полной кривой деформирования 

стены. Требуемое значение вертикальной внешней нагрузки Fy, моделирующей 

предварительное обжатие, вычисляется исходя из соотношения жесткостей 

пружин и самой стены на одноосное сжатие по формуле: 
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, (86) 

где Fx0 – требуемый уровень предварительного обжатия стены; 

 lx, ly, t – ширина, высота и толщина стены соответственно; 

 E0 – начальный модуль деформации стены. 

4. Для валидации разработанной модели требуется перейти от значений 

узловых сил к усилиям в описанных ранее поршнях 1–4. Для этого внутренние 

усилия в пружинах для каждого i-го узла могут быть преобразованы к статически 

эквивалентной комбинации реактивных усилий с учетом геометрии их 

расположения (Рисунок 26, б): 

в поршне 1: 

 , , , ,1
,n

x x i x i x i x i xi
F r r f u k

=
= = −∑ , (87) 

где ux,i – перемещение узла по оси X; 

в поршнях 2 и 3, 4: 

 [ ] [ ]
2 3 4

1,0 м 0,5 м
;

1,5[м] 1,5[м] 2
y y

y y y

F M F M
F F F
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⋅
, (88) 

где Fy, M внутренние усилия в уровне верха стены: 

, , , ,1
,n

y y i y i y i y i yi
F r r f u k

=
= = −∑  – равнодействующая узловых сил; 

,1

n
y y i ii

F r l
=

=∑  – изгибающий момент узловых сил. 

4.3 Выбор данных для валидации 

При обзоре известных численных моделей, приведенных в Таблице 10, 

можно обратить внимание на то, что при их валидации авторы ограничиваются 

достаточно малым набором из одного, двух экспериментальных результатов, тогда 

как оригинальная работа [101, 112] для сплошных стен содержит восемь успешно 

проведенных испытаний при различном уровне предварительного обжатия. 

Несмотря на то, что стены были изготовлены из одинаковых материалов, как 

уже указывалось ранее, на прочностные и деформационные свойства итогового 

изделия – кирпичной стены, влияет множество факторов, что обуславливает 
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большую вариативность итоговых характеристик. Для проведения валидации 

требуется убедиться в том, что свойства различных образцов стен в той или иной 

мере идентичны. Для этого в Таблицу 12 сведены точечные результаты их 

испытаний на сдвиг. 

Таблица 12 – К выбору данных для валидации по данным [101, 112] 

Обозначение 
образца Fy0, кН 

Усилия, соответствующие Fx, кН 
Fx, кН 

Fy2, кН Fy3+ Fy4, кН Fy, кН M, кНм 

J4D 40,0 22,7 55,7 78,4 44,35 51,1 

J5D 40,0 42,2 63,8 106,0 42,7 53,0 

J6D 120,0 50,9 81,2 132,1 55,75 71,6 

J7D 210,0 73,5 108,0 181,5 71,25 97,0 

J3D 45,0 36,3 83,2 119,5 65,05 87,3 

J8D 10,0 33,0 57,8 90,8 41,3 62,0 

J9D 98,0 46,0 105,8 151,8 82,8 107,4 

J10D 150,0 59,0 111,0 170,0 81,5 114,5 

 

На Рисунке 27 по данным Таблицы 12 построены графики зависимости 

разрушающей сдвигающей силы Fx от значения предварительного обжатия Fy0, от 

значения обжатия Fy при разрушающей сдвигающей силе и от значения 

изгибающего момента M при той же разрушающей сдвигающей силе. 

На графиках Рисунка 27 выделяется некоторая кластеризация результатов, 

т.е. несмотря на то, что для всех образцов были использованы одинаковые 

материалы кирпича и раствора, прочностные свойства итоговых изделий 

существенно различаются, при этом можно выделить две группы образцов, 

свойства которых, вероятно, можно считать достаточно близкими, чтобы 

использовать результаты их испытаний для валидации моделей с одинаковыми 

входными параметрами. 
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Источник: составлено автором 

Рисунок 27 – Графики зависимости для разрушающей сдвигающей силы 

В известных работах из Таблицы 10 валидация проведена преимущественно 

на образцах J5D и J4D, т.е. при одном уровне предварительного обжатия, в работе 

[60] также рассматривается образец J6D при тех же характеристиках материала 

стен. Анализ Рисунка 27 также позволяет включить в базу моделей для валидации 

результаты испытания образца J7D. 

4.4 Результаты валидации 

4.4.1 Сплошные стены 

По результатам валидации и калибровки модели были назначены входные 

параметры, представленные в Таблице 13. 

Таблица 13 – Заданные характеристики каменной кладки 

Rcn, МПа Rct, МПа Rtn, МПа Rtt, МПа R45, МПа 

12 9,6 0,5 0,7 1,6 

Продолжение таблицы 13 

E0, МПа ν λcn Gcn, кН/м Gtn, кН/м ω 

3500 0,2 2,64 2,0 0,2 1,0 

 

Валидация проведена на трех образцах каменной кладки J4D, J6D и J7D с 

тремя различными уровнями предварительного обжатия 30 кН, 120 кН и 210 кН 
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соответственно. На Рисунке 28 представлена мозаика распределения секущего 

модуля деформаций в момент достижения максимальной сдвигающей силы, а на 

Рисунке 29 – соответствующие экспериментальные схемы трещинообразования. 

Численная модель демонстрирует хорошее соответствие распределения 

секущих жесткостей схемам трещинообразования, а также качественно 

характеризует тенденцию к разрушению образцов стен при малом уровне обжатия 

от сдвига в приопорных участках и появление диагональных трещин при больших 

уровнях обжатия. Эволюция трещин на Рисунке 29 обозначена последовательной 

нумерацией, для образца J7D такие данные отсутствуют или свидетельствуют о 

мгновенном хрупком разрушении по всей плоскости стены. 

 
Источник: составлено автором 

Рисунок 28 – Мозаики распределения секущего модуля деформаций 

 
Источник: составлено автором по данным [101, 112] 

Рисунок 29 – Схемы трещинообразования в образцах стен 
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На Рисунках 30–32, a, построены графики зависимости горизонтальной 

сдвигающей силы Fx, усилий Fy2, Fy3 и Fy4, а также суммарной средней 

вертикальной реакции Fy = Fy2 + Fy3 + Fy4 от горизонтального смещения верха 

стены. На Рисунках 30–32, б, представлены аналогичные данные, но по 

результатам экспериментальных исследований [101, 112]. 

  

(а) Источник: составлено автором (б) Источник: [101] 

Рисунок 30 – Кривые деформирования образца J4D (Fy0 = 30 кН) по результатам 

численной модели (а) и эксперимента (б) 

 
 

(а) Источник: составлено автором (б) Источник: [112] 

Рисунок 31 – Кривые деформирования образца J6D (Fy0 = 120 кН) по результатам 

численной модели (а) и эксперимента (б) 
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(а) Источник: составлено автором (б) Источник: [112] 

Рисунок 32 – Кривые деформирования образца J7D (Fy0 = 210 кН) по результатам 

численной модели (а) и эксперимента (б) 

Наблюдается хорошее соответствие кривых зависимости горизонтальной 

сдвигающей силы от смещения, в том числе отклонение максимального значения 

горизонтальной сдвигающей силы от экспериментального не превосходит 10%. 

Численные результаты образца J4D демонстрируют большую в сравнении с 

экспериментом жесткость, т.е. разрушающая величина горизонтальной силы 

достигается при меньшем смещении, для других образцов получено лучшее 

соответствие на всех этапах нагружения. 

4.4.2 Стены с проемом 

При моделировании других типов стен, нельзя исключать проблем с 

обеспечением эквивалентности их механических характеристик, как это было 

показано в разделе 4.3, однако с некоторой долей уверенности, ввиду отсутствия 

других данных (для стен с проемом не проводилось испытаний с различными 

уровнями предварительного обжатия) характеристики материала кирпичных стен 

приняты аналогичными для сплошных стен, описанных в Таблице 13, без 

проведения дополнительной калибровки. 

При валидации использованы данные двух испытаний образцов J2G и J3G с 

предварительным обжатием 30 кН. 

На Рисунке 33 представлена мозаика распределения секущего модуля 

деформаций в момент достижения максимальной сдвигающей силы. Численная 

21090
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модель демонстрирует хорошее соответствие распределения секущих жесткостей 

схемам трещинообразования. 

   
(а) составлено автором (б) адаптация [101] (в) адаптация [101] 

Рисунок 33 – Мозаика распределения секущего модуля деформаций (а)  

и экспериментальные картины трещинообразования (б) 

На Рисунке 34 построены графики зависимости горизонтальной сдвигающей 

силы Fx, усилий Fy2, Fy3 и Fy4, а также суммарной средней вертикальной реакции 

Fy = Fy2 + Fy3 + Fy4 от горизонтального смещения верха стены. Поскольку базовая 

модель (Рисунке 34, а) с параметрами материала согласно Таблице 13 

демонстрирует недостаточную степень пластичности разрушения в калиброванной 

модели (Рисунке 34, б) удельная энергия разрушения по нормальному сцеплению 

увеличена до Gtn = 0,8 кН/м. 

  

(а) Источник: составлено автором (б) Источник: составлено автором 

Рисунок 34 – Кривые деформирования для образцов J2G и J3G (Fy0 = 30 кН)  

до калибровки (а) и после калибровки (б) 
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На Рисунке 35 представлены аналогичные данные, но по результатам 

экспериментальных исследований для образцов J2G и J3G [101]. 

  

(а) Источник: [101] (б) Источник: [101] 

Рисунок 35 – Кривые деформирования образца J2G (а) и J3G (б) (Fy0 = 30 кН) 

На Рисунке 36 показано сравнение кривых деформирования базовой и 

калиброванной модели с кривыми деформирования, полученными другими 

авторами (Таблица 10) для данных типов образцов. 

 
Источник: составлено автором 

Рисунок 36 – Сравнение экспериментальных кривых  

деформирования с результатами других авторов 
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Отклонение полученного значения горизонтальной сдвигающей силы от 

экспериментального не превышает 10%. Наблюдается качественное соответствие 

кривых деформирования и всех анализируемых усилий. Как и для образца 

сплошной стены J4D при малом уровне предварительного обжатия наблюдается 

большая в сравнении с экспериментом жесткость, т.е. разрушающая величина 

горизонтальной силы достигается при меньшем смещении. 

Численные модели других авторов демонстрируют плавную ветвь 

разупрочнения, лишь в модели Teschemacher и др. [60] наблюдается схожий 

скачок. Аналогично предположению авторов [60] такое поведение можно 

обосновать внедрением в модель критерия разрушения при сдвиге вдоль швов 

кладки. Для получения большего соответствия данным экспериментального 

исследования потребовалось увеличение удельной энергии разрушения 

нормального сцепления, что при преобладании сдвигового механизма разрушения 

может говорить о необходимости корректировки аппроксимационной поверхности 

согласно (52) путем введения независимого параметра, характеризующего 

удельную энергию разрушения при сдвиге. 

4.5 Анализ чувствительности к размеру сетки 

Анализ чувствительности модели к размеру сетки конечных элементов 

проведен для образца J7D с уровнем предварительного обжатия 210 кН. Проверка 

проведена на трех уровнях дискретизации сетки: 20×20 элементов 

(характеристический размер конечного элемента 50 мм), 40×40 (25 мм) и 50×50 

(20 мм). Для сравнения анализ был проведен при задании ниспадающего участка 

кривой деформирования кладки через энергию разрушения и фиксированно, при 

этом в качестве базовой для обоих моделей была выбрана сетка 20×20 элементов, 

которая близка к максимально возможной из условия накопления упругой энергии 

деформирования. 

При описании ниспадающего участка кривой деформирования через энергию 

разрушения характеристический размер конечного элемента не должен превышать 

некоторого размера, т. к. иначе в нем при деформировании накапливается больше 

упругой энергии, чем требуется для реализации ниспадающего участка и 
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происходит «хрупкое» разрушение, а ниспадающий участок кривой 

деформирования вырождается в вертикальный участок. 

Исходя из этого, в программе контролируется упругая энергия, накопленная 

в конечном элементе при достижении предела прочности. Энергия разрушения 

должна превышать это значение: 
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Для рассматриваемой модели эти величины равны Gcn,el = 1,33 кН/м; 

Gtn,el = 8,75×10-4 кН/м. При увеличении размеров КЭ эти величины будут расти. 

На Рисунке 37, а, представлены результаты расчета при задании энергии 

разрушения, на Рисунке 37, б, – при фиксированной ниспадающей ветви кривой 

деформирования кладки. 

 
Источник: составлено автором 

Рисунок 37 – Кривые деформирования стен для образца J7D при различном 

размере конечных элементов при задании энергии разрушения (a) и при 

фиксированной ниспадающей ветви кривой деформирования кладки (б) 

Можно утверждать, что использование фиксированной ниспадающей ветви 

кривой деформирования материала кладки приводит к некорректному описанию 

пост-пикового поведения стен и чувствительности модели к размеру сетки. Задание 
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энергии разрушения позволяет сделать модель нечувствительной к сетке, при этом 

устанавливается верхняя граница на размер конечного элемента, исходя из уровня 

накапливаемой в нем упругой энергии деформирования. 

4.6 Дисперсионный анализ чувствительности модели 

Для сплошных стен выполнен дисперсионный анализ чувствительности 

модели по описанному ранее методу Морриса [93], реализованного в библиотеке 

SALib с учетом модификации [70]. При количестве параметров k = 11, количестве 

траекторий r = 20 и числе уровней p = 4 общее число проведенных симуляций для 

каждого образца составило N = r (k + 1) = 240. При числе образцов, равным трем, 

общее число симуляций составило 720. Ввиду отсутствия данных о дисперсии, 

каждый из параметров варьировался с одинаковым разбросом ± 0,1 от его среднего 

значения. 

На Рисунках 38–39 представлены кривые деформирования для каждой 240 

симуляций для трех типов образцов при разных уровнях предварительного 

обжатия. 

При валидации модели в качестве выхода исследуемой функции f (x) приняты 

скалярные результаты МКЭ-расчета: максимальная горизонтальная сдвигающая 

реактивная сила и работа этой силы на перемещении верха стены, численно равная 

интегралу зависимости горизонтальной силы от смещения. 

  

(а) Источник: составлено автором (б) Источник: составлено автором 

Рисунок 38 – Кривые деформирования стен, образец J4D (а) и J6D (б) 
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Источник: составлено автором 

Рисунок 39 – Кривые деформирования стен, образец J7D 

По результатам анализа вычислены значения абсолютного среднего 

элементарных эффектов μi
*, характеризующего степень влияния параметра и 

стандартное отклонение элементарных эффектов σi, характеризующее 

нелинейность влияния параметра или его зависимость от других. 

После вычисления соответствующих метрик параметры были ранжированы 

по их степени влияния. Результаты ранжирования представлены на 

Рисунках 40, 41. 

 
Источник: составлено автором 

Рисунок 40 – Ранжирование параметров по степени влияния на значение 

максимальной горизонтальной силы для трех уровней предварительного обжатия 
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Источник: составлено автором 

Рисунок 41 – Ранжирование параметров по степени влияния на значение работы 

горизонтальной силы для трех уровней предварительного обжатия 

Во всех случаях модель показала наибольшую чувствительность к значению 

предела прочности R45, связанному с пределом прочности на действие главных 

растягивающих напряжений. С уменьшением величины предварительного обжатия 

возрастает роль характеристик прочности, связанных с нормальным сцеплением, – 

предела прочности Rtn и энергии разрушения Gtn. Наименьшую чувствительность 

модель показала к параметру ω, характеризующему развитие дилатационных 

эффектов, что, вероятно, обусловлено малым уровнем действующих сжимающих 

усилий при данном виде напряженного состояния. 

Дисперсионный анализ чувствительности показал существенное влияние 

характеристик прочности на растяжение и сдвиг на предельное состояние стен при 

данных граничных условиях. Проведенная калибровка модели показала 

необходимость завышения пределов прочности сцепления, полученных на малых 

образцах, что отмечается также в работах Г. А. Гениева и др. Такое заключение 

совместно с выявленным большим значением коэффициента вариации указывает 

на важность развития исследований по экспериментальному определению этих 

характеристик, в частности, стандартизации испытаний на диагональное 

раскалывание. 
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4.7 Выводы по главе 

1. Проведены численные расчеты каменных стен при совместном действии 

вертикальных и горизонтальных сил по данным известных экспериментальных 

исследований. Расчеты выполнялись при трех уровнях предварительного обжатия 

для сплошных стен и стен с проемом. 

2. Построены кривые зависимости сил от горизонтального смещения верха 

стены, которые позволили показать работу модели на всех этапах нагружения и 

доказать достоверность получаемых результатов. Численные результаты также 

сопоставлены с известными моделями других авторов. 

3. Показано хорошее соответствие предложенной модели как численным, так 

и экспериментальным данным. Отклонение максимального значения 

горизонтальной сдвигающей силы от экспериментальных данных не превышает 

10%. При малых уровнях предварительного обжатия модель демонстрирует более 

жесткое поведение под нагрузкой, чем в эксперименте. 

4. Выполнен анализ чувствительности модели к размеру сетки конечных 

элементов. Показано, что использование фиксированной ниспадающей ветви 

кривой деформирования материала кладки приводит к некорректному описанию 

пост-пикового поведения стен и чувствительности модели к размеру сетки. Задание 

энергии разрушения позволяет сделать модель нечувствительной к сетке, при этом 

устанавливается верхняя граница на размер конечного элемента, исходя из уровня 

накапливаемой в нем упругой энергии деформирования. 

5. Проведенный дисперсионный анализ чувствительности показал большое 

влияние пределов прочности кладки на растяжение и сдвиг на предельное 

состояние стен и характеристик пластичности разрушения. Даны практические 

рекомендации по расчету конструкций с использованием разработанной модели, в 

частности, требуется завышение пределов прочности сцепления, полученных на 

малых образцах, что отмечается также в работах Г. А. Гениева и других авторов. 
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ЗАКЛЮЧЕНИЕ 

Основные результаты и выводы: 

1. Анализ теоретических и экспериментальных работ отечественных и 

зарубежных ученых позволил определить особенности работы каменных стен под 

статической нагрузкой: физическая нелинейность, разносопротивляемость, 

анизотропия прочности, анизотропия пост-пикового разупрочнения, дилатация, 

зависимость механизмов разрушения каменных стен от соотношения сторон и 

уровня предварительного обжатия. Анализ существующих методов расчета 

каменных конструкций показал существенный разрыв между нормативными 

методиками расчета, основанными на анализе стержневых моделей, и устоявшейся 

практикой инженерных расчетов в программных комплексах на пространственных 

моделях из плоских типов конечных элементов. Показано, что моделирование 

кладки как однородной сплошной среды и применение метода конечных элементов 

являются наиболее эффективным для анализа напряженно-деформированного 

состояния на уровне несущих конструкций зданий и сооружений. При этом 

применение деформационной теории пластичности в отличие от теории 

пластичности типа течения позволяет использовать более сложные анизотропные 

критерии прочности с множественными сингулярными ребрами и вершинами. 

2. Разработан критерий прочности каменных кладок с учетом анизотропии 

прочности при плоском напряженном состоянии. Инвариантная форма записи 

предельной поверхности позволяет применять критерий в физически нелинейных 

моделях деформационного типа. Минимальный набор из пяти стандартных 

испытаний на одноосные нагружения: сжатие и растяжение вдоль и поперек 

горизонтальных швов, а также сжатие под углом 45° к горизонтальным швам 

кладки, позволяет применять его для широкого класса неармированных каменных 

конструкций. Формулирование критерия в виде кусочно-заданной функции на 

основе четырех механизмов разрушения: нормального сцепления при растяжении, 

касательного сцепления при сдвиге, скалывания по косой штрабе при действии 

главных растягивающих напряжений и раздробления кладки при сжатии, позволяет 

прогнозировать изменение несущей способности кладки в зависимости от угла 
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ориентации главных напряжений. Достоверность предложенного критерия 

прочности подтверждена пересечением предельной кривой критерия прочности с 

95% доверительными интервалами экспериментальных значений других авторов. 

3. Разработана модель деформирования неармированной каменной кладки 

при плоском напряженном состоянии с учетом физической нелинейности и 

анизотропии прочности на основе деформационной теории пластичности. Модель 

расширена на случай ортотропного материала в сравнении с моделями бетона 

Г. А. Гениева, В. М. Круглова, С. Ю. Фиалко и учитывает дилатационные эффекты 

в отличие от модели кладки Г. А. Тюпина, согласно подходу модели бетона 

С. Ф. Клованича. Напряжения, соответствующие пределу прочности, зависят не 

только от вида напряженного состояния, как это реализовано в описанных ранее 

моделях бетона, но и от угла ориентации главных напряжений относительно осей 

ортотропии кладки. Деформации, соответствующие пределу прочности, 

определяются согласно подходу модели бетона В. И. Корсуна с использованием 

предельного параметра пластичности, который в отличие от этой модели 

представляется в виде функции, полученной аффинным преобразованием функции 

предельной поверхности разработанного критерия прочности. Вид ниспадающего 

участка кривой деформирования определяется путем задания энергии разрушения 

кладки при одноосном сжатии и растяжении, а промежуточные значения 

определяются интерполяционной функцией, которая, как и для предельного 

параметра пластичности, получается аффинным преобразованием функции 

критерия прочности. Это позволяет, согласно подходу Z. Bazant и B. Oh, в рамках 

гипотезы размазанных трещин избежать чувствительности модели к размеру сетки 

конечных элементов в момент появления и развития трещин, что было 

подтверждено валидационным расчетом. Для численной реализации по 

предложенной модели физические соотношения каменной кладки записаны в 

форме секущих характеристик матрицы жесткости. 

4. Предложена процедура нелинейного расчета при сложном нагружении 

методом переменных параметров упругости. Подход описан также в работе 

Н. И. Карпенко, В. М. Круглова, Л. Ю. Соловьева и основан на выделении 
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мгновенных поверхностей нагружения в каждой рассматриваемой точке 

конструкции. При этом нелинейная задача переменных параметров упругости в 

полных перемещениях заменяется на аналогичную в конечных приращениях, а в 

матрице жесткости используются обобщенные модули деформаций. В отличие от 

работы авторов, в разработанной модели параметры, отвечающие за положение 

мгновенной поверхности нагружения, заданы как функции деформаций, а не 

напряжений, что позволяет учесть полную кривую деформирования с 

ниспадающим участком. 

5. На базе метода конечных элементов, авторской модели каменной кладки и 

метода переменных параметров упругости разработаны алгоритмы расчета, по 

которым на языке программирования Python написана программа. Программа 

выполнена согласно современным подходам к объектно-ориентированному 

программированию. На модуль, отвечающий за формирование критерия прочности 

кладки и выбор параметров эталонных диаграмм деформирования, получено 

свидетельство о регистрации программы для ЭВМ № 2021618016. Алгоритм 

определения переменных параметров упругости кладки реализован в пакете 

плагинов «КладК» (Свидетельство о государственной регистрации программы для 

ЭВМ № 2024613626, Сертификат соответствия № РОСС RU.04ПЛК0.OC01. 

H00046) к ПВК «SCAD++». 

6. Проведены численные расчеты каменных стен по исходным данным 

известных экспериментальных исследований A. T. Vermeltfoort, C. F. P. Naninck, 

T. M. J. Raijmakers. Расчеты выполнялись для стен с центральным отверстием, 

моделирующим оконный проем, и для сплошных стен при трех уровнях обжатия 

вертикальной силой. Результаты сопоставлены как с экспериментом, так и с 

известными моделями других авторов, в частности, Lourenco, G. Milani, Pela, 

Petracca, Abdulla, Fu, Bilko, Pulatsu, D’Altri, Teschemacher и др. Показано хорошее 

соответствие модели как численным, так и экспериментальным данным: 

отклонение максимального значения горизонтальной сдвигающей силы от 

экспериментального не превышает 10%, также наблюдается качественное 

соответствие кривых деформирования и анализируемых реактивных усилий в 
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связях. При малом уровне предварительного обжатия наблюдается бóльшая в 

сравнении с экспериментом жесткость, т.е. разрушающая величина 

горизонтальной силы достигается при меньшем смещении. Численные модели 

других авторов демонстрируют более плавную ветвь разупрочнения, лишь в 

модели Teschemacher и др. наблюдается схожий скачок, что может быть 

обосновано внедрением в модель критерия разрушения при сдвиге. 

7. Дисперсионный анализ чувствительности модели показал большое 

влияние пределов прочности кладки на растяжение и сдвиг на предельное 

состояние стен и характеристик пластичности разрушения. Даны практические 

рекомендации по расчету конструкций с использованием разработанной модели, в 

частности, требуется завышение пределов прочности сцепления, полученных на 

малых образцах, что отмечается также в работах Г. А. Гениева и других авторов. 

Для получения большего соответствия данным экспериментального исследования 

потребовалось увеличение удельной энергии разрушения нормального сцепления, 

что при преобладании сдвигового механизма разрушения может говорить о 

необходимости корректировки аппроксимационной поверхности энергии 

разрушения путем введения независимого параметра, характеризующего удельную 

энергию разрушения при сдвиге. 

Рекомендации и перспективы дальнейшей разработки темы: 

Модель может быть усовершенствована для учета продольного изгиба стен и 

изгибающих моментов в конструкциях каменных сводов. Интерес представляет 

развитие теории расчета армированных каменных кладок, в том числе усиленных 

внешним армированием, а также вопросы учета циклических нагрузок на такие 

конструкции при строительстве и реконструкции в сейсмоактивных районах. 
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ПРИЛОЖЕНИЕ А. ФРАГМЕНТЫ КОДА ПРОГРАММЫ ДЛЯ ЭВМ 

Таблица А.1 – Спецификация основных функций и методов 

№ 
п.п. Наименование Описание Стр. 

1 def fem 
Основная функция выполнения физически 
нелинейного расчета методом переменных параметров 
упругости 

119 

2 def morris 
Проведение дисперсионного анализа чувствительности 
скалярных результатов функции def fem методом 
Морриса 

121 

3 def set_stress_mode() Расчет по критерию прочности каменной кладки 
параметров кривой деформирования 122 

4 def set_secant_stiffness() Расчет секущей материальной матрицы жесткости 123 

 

 

Импорт библиотек 

# Импорт сторонних библиотек 
 
import numpy as np 
 
import matplotlib.pyplot as plt 
import matplotlib.colors as colors 
from matplotlib.collections import LineCollection 
from matplotlib.collections import PatchCollection 
from matplotlib.patches import Polygon 
from matplotlib.colors import Normalize 
 
from SALib.sample import morris as morris_sample 
from SALib.analyze import morris as morris_analyze 
from SALib.plotting.morris import covariance_plot 
 
from scipy.integrate import simpson 
 
# Импорт разработанных классов и их методов 
 
from fem_model import Mesh 
from fem_model import Solver 
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А.1 Физически-нелинейный расчет стен 

def fem(): 
 
  # НАЧАЛО ПРОГРАММЫ --------------------------------------------- # 
  # ПРЕПРОЦЕССОР <начало> ---------------------------------------- # 
   
  # задние геометрических свойств 
  size = [1.0, 1.0] # ширина (по x) и высота (по y) 
  part = [20, 20] # количество разбиений на x и y 
 
  # задание свойств материалов стены и пружин 
  wall_prop = {'Rcn': 12000, 'Rct': 9600, 'Rtn': 500, 'Rtt': 700, 
         'R45': 1600, 'E0': 3.5e6, 'nu0': 0.2, 'lmb_cn': 2.64,  
         'Gcn': 2.0, 'Gtn': 0.2, 'omega': 1.0} 
  spring_prop = {'Kx': 1e6, 'Ky': 1e12} 
 
  # задание внешних нагрузок 
  Fx0 = 5000.0 
  Fy0 = -30 
 
  # объявление списков для хранения результатов расчета 
  Force1 = [[0., 0.]] 
  ForceS = [[0., 0.]] 
  Force3 = [[0., 0.]] 
  Force2 = [[0., 0.]] 
 
  # построение геометрии 
  wall = Mesh().generate_wall_4(*size, *part, wall_prop) 
  # wall = Mesh().generate_wall_csv(wall_prop) 
  sprg = Mesh().generate_spring(wall, spring_prop) 
  cons = Mesh().get_assembling(wall, sprg) 
 
  x_max = max([node.coord[0] for node in wall.nodes]) 
  y_max = max([node.coord[1] for node in wall.nodes]) 
 
  # отметка закрепленных от смещения узлов 
  [node.set_bcond_x() for node in wall.nodes if node.coord[1] == 0] 
  [node.set_bcond_x() for node in sprg.nodes] 
  [node.set_bcond_y() for node in wall.nodes if node.coord[1] == 0] 
  [node.set_bcond_y() for node in sprg.nodes] 
 
  [node.set_solid() for node in wall.nodes if node.coord[1] == y_max] 
 
  # ПРЕПРОЦЕССОР <конец> ----------------------------------------- # 
  # ШАГОВО-ИТЕРАЦИОННЫЙ АЛГОРИТМ <начало> ------------------------ # 
   
  # создание объекта решения > формирование глобальной матрицы жесткости 
  solv = Solver().set_stiff(cons.nodes, cons.elems) 
   
  step = 20 # количество шагов 
  for i in range(step): 
 
    # задание закона изменения внешней нагрузки по шагам 
    Fx = (Fx0 / step) * (i) 
    Fy = (1 + spring_prop['Ky']*size[1]/(wall_prop['E0']*size[0]*0.1))*Fy0 
 
    # задание узловых нагрузок 
    num = len(sprg.nodes) 
    for node in wall.nodes: 
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      if node.coord[1] == y_max: 
        node.set_load(Fx / (num - 1), Fy / (num - 1)) 
        if node.coord[0] == 0.0 or node.coord[0] == x_max: 
          node.load *= 0.5 
 
    solv.set_load(cons.nodes) # формирование глобального вектора нагрузки 
    solv.solve() # решение задачи 
  
    res = 1.0 # начальное значение невязки 
    tol = 0.01 # требуемое значение невязки 
 
    while res > tol: 
       
      # передача вычисленных перемещений в узлы и элементы 
      for id, node in enumerate(cons.nodes): 
        node.set_disp(solv.U.reshape((-1, 2))[id]) 
 
      # изменение матрицы жесткости стены 
      for elem in wall.elems: 
        elem.set_sss() # расчет НДС 
        elem.set_stress_mode() # расчет по критерию прочности 
        elem.set_secant_stiffness() # расчет сек. жесткости 
        elem.set_element_stiffness() # расчет жесткости КЭ 
 
      solv.set_stiff(cons.nodes, cons.elems)  
      solv.solve() # решение задачи 
 
      # вычисление невязки 
      res = np.linalg.norm(solv.U - solv.U_old) / np.linalg.norm(solv.U) 
      print('|', end='')   
     
    print(' step', i) 
 
    # обновление деформации для контроля разгрузки 
    [elem.set_unload() for elem in wall.elems] 
 
    # ШАГОВО-ИТЕРАЦИОННЫЙ АЛГОРИТМ <конец> --------------------- # 
    # СОХРАНЕНИЕ РЕЗУЛЬТАТОВ ДЛЯ ВИЗУАЛИЗАЦИИ ПО ШАГАМ <начало> -# 
 
    # перемещение и усилие по x крайнего узла 
    react_Q = 0 
    react_N = 0 
    react_M = 0 
    for elem in sprg.elems: 
      react_Q += elem.nodes[0].load[0] - elem.nodes[0].disp[0] * elem.Kx 
      react_N += elem.nodes[0].load[1] - elem.nodes[0].disp[1] * elem.Ky 
      react_M += (elem.nodes[0].load[1] - elem.nodes[0].disp[1] * elem.Ky) * 

(elem.nodes[0].coord[0] - size[0]/2) 
    Force1.append([wall.nodes[-1].disp[0], abs(react_Q)]) 
    ForceS.append([wall.nodes[-1].disp[0], abs(react_N)]) 
    Force3.append([wall.nodes[-1].disp[0], abs(react_N*0.5 - react_M)/1.5/2]) 
    Force2.append([wall.nodes[-1].disp[0], abs(react_N*1.0 + react_M)/1.5]) 
 
 
    # СОХРАНЕНИЕ РЕЗУЛЬТАТОВ ДЛЯ ВИЗУАЛИЗАЦИИ ПО ШАГАМ <конец> - # 
 
  print('Calculation completed successfully') 
 
  # КОНЕЦ ПРОГРАММЫ ---------------------------------------------- # 
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А.2 Анализ чувствительности методом Морриса 

def morris(): 
   
  # Исходные параметры 
  params_dict = {'Rcn': 12000, 'Rct': 9600, 'Rtn': 500, 'Rtt': 700, 
         'R45': 1600, 'E0': 3.5e6, 'nu0': 0.2, 'lmb_cn': 2.64,  
         'Gcn': 2.0, 'Gtn': 0.2, 'omega': 1.0} 
 
  # Общий коэффициент вариации 
  CV = 0.1  
 
  # Problem для метода Морриса 
  problem = { 
    'num_vars': len(params_dict), 
    'names': list(params_dict.keys()), 
    'bounds': [], 
    'groups': None # Если нет группировки переменных 
  } 
 
  # Задание границ 
  for param_name in problem['names']: 
    mean = params_dict[param_name]  
    lower_bound = 0.9*mean 
    upper_bound = 1.1*mean 
    problem['bounds'].append([lower_bound, upper_bound]) 
 
  # Параметры анализа 
  r = 20 # Количество траекторий 
  p = 4  # Уровни дискретизации 
 
  # Генерация выборки 
  print("Генерация выборки Морриса...") 
  param_values = morris_sample.sample(problem, r, p) 
 
  print("Запуск расчетов...") 
   
  # Выполнение расчетов для всех параметров 
  results = [fem(params) for params in tqdm(param_values, desc="Выполнение расчетов")] 
  X_values = [res[0] for res in results] 
  Y_values = [res[1] for res in results] 
  Y_max_values = np.array([res[2] for res in results]) 
  G_values = np.array([res[3] for res in results]) 
 
  # Анализ чувствительности для Y_max и G 
  print("Анализ результатов...") 
  Si_Ymax = morris_analyze.analyze(problem, param_values, Y_max_values, conf_level=0.95) 
  Si_G = morris_analyze.analyze(problem, param_values, G_values, conf_level=0.95) 

 



122 

А.3 Критерий прочности кладки 

def set_stress_mode(self, stress_oct): 
    Rcn = self.properties['Rcn'] 
    Rct = self.properties['Rct'] 
    Rtn = self.properties['Rtn'] 
    Rtt = self.properties['Rtt'] 
    R45 = self.properties['R45'] 
    Rtw = (np.sqrt(2.0)/2.0)*(Rtn*R45)/np.sqrt(Rtn*(2.0*Rtn+R45)) 
     
    for i in range(4): 
      s_alpha = stress_oct[i][2] 
      s_alpha = 10**(-16)      if s_alpha == 0    else s_alpha 
      s_alpha = np.pi/2 - 10**(-16) if s_alpha == np.pi/2 else s_alpha 
      s_ksi = stress_oct[i][1] 
       
      # ---------- Критерий прочности кладки -------------- # 
       
      # критерий прочности при -2 < sqrt(2)*ksi < -1 
      if s_ksi < -np.sqrt(2.0)/2.0: 
        rc2 = Rcn*np.sin(s_alpha)**2.0+Rct*np.cos(s_alpha)**2.0 
        rc3 = Rcn*np.cos(s_alpha)**2.0+Rct*np.sin(s_alpha)**2.0 
        tau_c = np.sqrt(6.0)*rc2*rc3/(3.0*np.sqrt((s_ksi**2.0+1.0)*(rc2-

rc3)**2.0+s_ksi*np.sqrt(3.0*(2.0-s_ksi**2.0))*(rc3**2.0-
rc2**2.0)+3.0*rc2*rc3)) 

        f1 = (2.0-s_ksi**2.0)*np.sin(2.0*s_alpha)**2.0 
        f2 = np.sqrt(3.0)*s_ksi-np.sqrt(2.0-s_ksi**2.0)*np.cos(2.0*s_alpha) 
        tau_sc = Rtw*(np.sqrt(4.0*f1+(Rtw*f2/Rtn)**2.0)-Rtw*f2/Rtn)/(np.sqrt(3.0)*f1) 
         
        tau_u, mode = (tau_c, 'C') if tau_c < tau_sc else (tau_sc, 'Sc') 
      else:         
        # критерий прочности при -1 < sqrt(2)*ksi < 1 
        if s_ksi < np.sqrt(2.0)/2.0: 
          rc3 = Rcn*np.cos(s_alpha)**2.0+Rct*np.sin(s_alpha)**2.0 
          rt1 = Rtn*np.sin(s_alpha)**2.0+Rtt*np.cos(s_alpha)**2.0 
          tau_st = 2.0*rc3*rt1/(3.0*s_ksi*(rc3-rt1)+np.sqrt(3.0*(2.0-

s_ksi**2.0))*(rc3+rt1)) 
          f1 = (2.0-s_ksi**2.0)*np.sin(2.0*s_alpha)**2.0 
          f2 = np.sqrt(3.0)*s_ksi-np.sqrt(2.0-s_ksi**2.0)*np.cos(2.0*s_alpha) 
          tau_sc = Rtw*(np.sqrt(4.0*f1+(Rtw*f2/Rtn)**2.0)-Rtw*f2/Rtn)/(np.sqrt(3.0)*f1) 
           
          tau_u, mode = (tau_st, 'St') if tau_st < tau_sc else (tau_sc, 'Sc') 
        else: 
          # критерий прочности при 1 < sqrt(2)*ksi < 2 
          rt1 = Rtn*np.sin(s_alpha)**2.0+Rtt*np.cos(s_alpha)**2.0 
          rt2 = Rtn*np.cos(s_alpha)**2.0+Rtt*np.sin(s_alpha)**2.0 
          tau_t = 

np.sqrt(6.0)*rt1*rt2/(3.0*np.sqrt((s_ksi**2.0+1.0)*(rt1**2.0+rt2
**2.0)+s_ksi*np.sqrt(3.0*(2.0-s_ksi**2.0))*(rt2**2.0-rt1**2.0))) 

         
          tau_u, mode = tau_t, 'T' 
       
      # ----------------------------------------------------- # 
       
      self.t_u[i] = tau_u # пиковое окт. кас. напряжение 
      self.s_u[i] = tau_u * s_ksi # пред. окт. норм. напряжение 
      self.mode[i] = mode # режим разрушения: С, Sc, St, T 
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А.4 Расчет секущей матрицы жесткости материала 

def set_secant_stiffness(self, strain_oct, len): 
     
    Rcn   = self.properties['Rcn'] 
    Rtn   = self.properties['Rtn'] 
    lmb_cn = self.properties['lmb_cn'] 
    E0   = self.properties['E0' ] 
    nu0   = self.properties['nu0'] 
    G0   = E0/(2 + 2*nu0) 
    K0   = E0/(3 - 6*nu0) 
    Gcn   = self.properties['Gcn'] 
    Gtn   = self.properties['Gtn'] 
    omega  = self.properties['omega'] 
     
    for i in range(4): 
      g_oct = strain_oct[i][0] 
      e_oct = strain_oct[i][0] * strain_oct[i][1] 
      t_u = self.t_u[i] 
      s_u = self.s_u[i] 
      tau_cn = Rcn*np.sqrt(2)/3 
      tau_tn = Rtn*np.sqrt(2)/3 
      lmb = ((t_u - tau_tn)/tau_cn)*(lmb_cn - 1.0) + 1.0 
       
      soft_cn = lmb_cn*(Gcn/len - (Rcn**2)*lmb_cn/E0/2)/(Rcn*gamma(1/lmb_cn)) 
      soft_tn = (Gtn/len - (Rtn**2)/E0/2)/(Rtn)      
      soft = ((t_u - tau_tn)/tau_cn)*(soft_cn - soft_tn) + soft_tn 
       
      g_u = lmb*t_u/G0 
      e_u = lmb*s_u/K0 
       
      # вычисление коэффициента пластичности 
 
      if g_oct > self.g_oct_unload[i]: 
        if g_oct <= g_u: 
          r = g_oct/g_u 
          self.psi[i] = (1.0 + (lmb - 2.0)*r)/(1.0 - r/lmb) 
        else: 
          self.psi[i] = (G0*g_oct/t_u)*np.exp(((g_oct-g_u)/soft)**lmb) 
      if e_oct > self.e_oct_unload[i]: 
        dilat = np.exp(-omega*g_oct/(1-g_oct)) 
        if e_oct <= e_u: 
          r = e_oct/e_u 
          self.phi[i] = dilat*(1.0 + (lmb - 2.0)*r)/(1.0 - r/lmb) 
        else: 
          self.phi[i] = dilat*(K0*e_oct/s_u)*np.exp(((e_oct-e_u)/soft)**lmb) 
       
      self.E[i] = E = 3*E0/((2+2*nu0)*self.psi[i] + (1-2*nu0)*self.phi[i]) 
      a = (self.phi[i]*(1-2*nu0))/(self.psi[i]*(1+nu0)) 
      self.nu[i] = nu = (1-a)/(2+a) 
     
      self.stiff[i] = E/(1.0-nu**2)*np.array([[1.0, nu, 0.0],  
                          [nu, 1.0, 0.0],  
                          [0.0, 0.0, (1-nu)/2]]) 
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ПРИЛОЖЕНИЕ Б. СВИДЕТЕЛЬСТВА 

О РЕГИСТРАЦИИ ПРОГРАММ ДЛЯ ЭВМ 

Таблица Б.1 – Спецификация документов 

№ 
п.п. Наименование Стр. 

1 

Свидетельство о государственной регистрации программы для ЭВМ № 
2024613626 Российская Федерация. «Пакет плагинов КладК к вычислительному 
комплексу SCAD++ для расчета кирпичных или каменных зданий» : № 
2024611933 : заявл. 01.02.2024 : опубл. 14.02.2024 / М. Л. Поздеев, В. В. 
Резяпкин, А. В. Теплых, В. В. Ходыкин ; заявитель Общество с ограниченной 
ответственностью Научно-проектная фирма «СКАД СОФТ». – EDN NJTVPA. 

125 

2 

Сертификат соответствия № РОСС RU.04ПЛК0.OC01.H00046 : орган по 
сертификации РОСС RU.32493.04ПЛК0.ОC01 ООО «СИНЕРГИЯ» (ОС ООО 
«СИНЕРГИЯ») : изготовитель ООО Научно-проектная фирма «СКАД СОФТ» : 
сертификат выдан ООО Научно-проектная фирма «СКАД СОФТ» 

126 

3 

Свидетельство о государственной регистрации программы для ЭВМ № 
2021619002 Российская Федерация. Расчёт прочности каменной кладки при 
плоском напряжённом состоянии : № 2021618016 : заявл. 26.05.2021 : опубл. 
03.06.2021 / С. Ю. Лихачева, М. Л. Поздеев ; заявитель Федеральное 
государственное бюджетное образовательное учреждение высшего образования 
«Нижегородский государственный архитектурно-строительный университет». – 
EDN GUGDVW. 

127 

4 

Свидетельство о государственной регистрации программы для ЭВМ № 
2024691048 Российская Федерация. «Ортотропная сдвиговая модель прочности 
каменной кладки» : № 2024689883 : заявл. 06.12.2024 : опубл. 19.12.2024 / И. В. 
Смагин, С. Ю. Лихачева, М. Л. Поздеев ; заявитель Федеральное государственное 
бюджетное образовательное учреждение высшего образования «Нижегородский 
государственный архитектурно-строительный университет». – EDN TSEKGY. 

128 
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ПРИЛОЖЕНИЕ В. ВНЕДРЕНИЕ РЕЗУЛЬТАТОВ 

Таблица В.1 – Спецификация документов 

№ 
п.п. Наименование Стр. 

1 Акт внедрения результатов в деятельность ООО НПФ «СКАД СОФТ»  
при разработке пакета плагинов КладК к SCAD++ 130 

2 Акт внедрения результатов в деятельность ООО НПФ «СКАД СОФТ»  
при публичном обсуждении Свода правил СП 15.13330.2020 131 

3 Акт внедрения результатов в деятельность ННГАСУ при разработке систем 
мониторинга конструкций в рамках проекта «Техноплатформа 2035» 132 

4 Справка о внедрении результатов в учебный процесс ННГАСУ 133 

5 

Письмо генеральному директору ООО НПФ «СКАД СОФТ» А. А. Маляренко от 
ФАУ «ФЦС» по факту обращения по вопросу учета поступивших в рамках 
публичных обсуждений замечаний и предложений к Изменению №1 к 
СП 15.13330.2020 «СНиП II-22-81* Каменные и армокаменные конструкции» 

135 

6 

Сводка замечаний и предложений на проект первой редакции проекта 
СП «Каменные и армокаменные конструкции. Основные положения» в том числе 
с обоснованием замечаний, предложений от ООО НПФ «СКАД СОФТ» 
(Росстандарт. Уведомление о разработке проекта свода правил СП «Каменные и 
армокаменные конструкции. Основные положения». – URL: 
https://clck.ru/3NeJmA (дата обращения: 15.08.2025)) 

137 
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На № 17 от 30.10.2023

Генеральному директору
ООО НПФ «СКАД СОФТ»

А.А. Маляренко

scad@scadsoft.ru

Уважаемый Анатолий Александрович!

Федеральное автономное учреждение «Федеральный центр нормирования, 
стандартизации и технической оценки соответствия в строительстве» (ФАУ 
«ФЦС») рассмотрело Ваше обращение по вопросу учета поступивших в рамках 
публичных обсуждений замечаний и предложений к Изменению № 1 к 
СП 15.13330.2020 «СНиП II-22-81* Каменные и армокаменные конструкции» (далее 
– СП 15.13330.2020) и в рамках компетенции сообщает.

В 2023 году в соответствии с Планом разработки и утверждения сводов 
правил и актуализации ранее утвержденных сводов правил на 2023 год, 
утвержденным приказом Минстроя России от 20.01.2023 № 30/пр, силами 
АО «ЦНИИПромзданий» осуществляется разработка изменений к указанным 
сводам правил.

Поступившие в рамках проведения публичных обсуждений первых редакций 
проектов документов замечания и предложения ООО НПФ «СКАД СОФТ», были 
направлены в адрес исполнителей, однако были рассмотрены и учтены после 
размещения вторых редакций на официальном сайте Росстандарта.

По итогам рассмотрения замечаний и предложений к проекту Изменения № 1
к СП 15.13330.2020, большинство замечаний приняты или приняты частично, 
соответствующие изменения внесены в тексты документов. По отклоненным 
замечаниям представлен обоснованный ответ и пояснения.

Окончательная редакция проекта Изменения № 1 к СП 15.13330.2020, 
получившие положительное заключение экспертизы профильного технического 
комитета по стандартизации ТК 465 «Строительство», будут представлены в 

№



2

Исп.: Беспальченко Е.В. 
Тел.: +7 (495) 133-01-57 доб. 171

Минстрой России в порядке, установленном Правилами разработки, утверждения, 
опубликования, изменения и отмены сводов правил, утвержденными 
постановлением Правительства Российской Федерации от 01.07.2016 № 624, 
Порядком разработки, утверждения, изменения и отмены сводов правил в сфере 
строительства в Министерстве строительства и жилищно-коммунального 
хозяйства Российской Федерации, утвержденным приказом Минстроя России от 
26.11.2021 № 858/пр.

Приложение: на 21 л. в 1 экз.

С уважением,
Заместитель директора А.А. Пикалов
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