УДК 534.2

КОНЦЕНТРАЦИОННЫЕ ЗАВИСИМОСТИ ТЕРМОЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК ТВЕРДЫХ РАСТВОРОВ $Pb_{1-x}Ag_xS$ и $Pb_{1-x}Cu_xS$ ($0 \le x \le 0.011$)

© 2018 г. В. А. Голенищев-Кутузов, А. М. Синицин, Ю. В. Лабутина, В. А. Уланов*

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский государственный энергетический университет" *E-mail: ulvlad@inbox.ru

*E-mail: ulvlad@inbox.ru

При температуре T = 300 К изучены концентрационные зависимости коэффициента Зеебека (*S*), удельного сопротивления (ρ), теплопроводности (κ_{tot}) и постоянной Холла (R_H) смешанных кристаллов Pb_{1 - x}Ag_xS и Pb_{1 - x}Cu_xS в диапазоне концентраций $0 < x \le 0.011$. Установлено, что в Pb_{1 - x}Ag_xS серебро является акцепторной примесью и позволяет при $x \approx 0.0045$ инвертировать проводимость образцов Pb_{1 - x}Ag_xS с электронной на дырочную. В зависимостях S(x), $\rho(x)$, $\kappa_{tot}(x)$ и $R_H(x)$, полученных на образцах Pb_{1 - x}Cu_xS ($0 < x \le 0.011$), инверсию типа проводимости не наблюдали, однако и здесь выявлены признаки акцепторного влияния примеси.

DOI: 10.1134/S0367676518070190

Соединение PbS (галенит), на основе которого приготовлены исследуемые смешанные кристаллы $Pb_{1-x}Ag_xS$ и $Pb_{1-x}Cu_xS$, относится к группе перспективных полупроводниковых материалов халькогенидов свинца (PbS, PbTe и PbSe). Кристаллы этой группы соединений являются прямозонными узкощелевыми полупроводниками, имеют кристаллическую решетку типа NaCl и используются в качестве материалов для производства электронных и оптоэлектронных приборов, предназначенных для работы в средней инфракрасной области частот. В последнее время интерес к халькогенидам свинца резко возрос (см., например, [1–4]) в связи с обнаружением новых возможностей их использования в качестве материалов для высокоэф-фективных термоэлектрических преобразователей энергии для температурного диапазона 300-800 К. До последнего времени основной интерес исследователей был сосредоточен на соединении РbTe (алтаите), обладающем лучшими, из ряда халькогенидов свинца, термоэлектрическими характеристиками – наиболее высоким термоэдс (коэффициентом Зеебека S) и наиболее низкими удельным сопротивлением (ρ) и теплопроводностью (κ_{tot}). Однако выяснилось, что при массовом производстве термоэлектрических преобразователей немаловажными оказываются природная распространенность и токсичность используемого материала. По последним признакам в наиболее выгодном положении оказывается галенит (PbS). Это обстоятельство и то, что в последние годы были выявлены способы повышения термоэдс галенита и существенного понижения его теплопроводности, практический и теоретический интерес к этому соединению резко возрос [5]. При этом обнаружилось, что в научной литературе представлено мало информации о влиянии на его термоэлектрические свойства тех примесей, которые позволили существенно улучшить термоэлектрические характеристики РЬТе. К числу примесей, которые могут быть использованы для управления концентрацией и типом основных свободных носителей заряда в галените, но до сих пор не явились предметом исследований, относятся серебро и медь. Эти элементы могут оказаться для галенита удобными акцепторными примесями, поскольку отличаются от используемых для таких целей щелочных металлов и таллия меньшим количеством технологических проблем при легировании базового материала и меньшей токсичностью.

Целью данной работы явилось изучение концентрационных зависимостей основных термоэлектрических характеристик смешанных кристаллов $Pb_{1-x}Ag_xS$ и $Pb_{1-x}Cu_xS$ (коэффициента Зеебека, удельного электросопротивления и теплопроводности), а также получение методом Холла экспериментальной информации о влиянии серебра и меди на концентрацию и тип основных свободных носителей заряда. На данной стадии исследований мы ограничились проведением измерений указанных характеристик в нижней температурной точке указанного выше диапазона рабочих температур исследуемых материалов, T = 300 К. О результатах изучения тем-

Рис. 1. Зависимости величины коэффициента Зеебека (*S*) для образцов $Pb_{1-x}Ag_xS$ и $Pb_{1-x}Cu_xS$ от концентрации примесей (*x*) серебра (*1*) и меди (*2*) при температуре *T* = 300 K.

пературных зависимостей термоэлектрических характеристик полученных нами смешанных кристаллов будет сообщено в следующей публикации.

Основные результаты работы представлены в виде графиков, приведенных на рис. 1-4, где символ х использован для обозначения так называемой приведенной концентрации примесей. Этот же символ присутствует и в химических формулах исследуемых кристаллов, $Pb_{1-x}Ag_xS$ и $Pb_{1-x}Cu_xS$, и представляет собой вероятность обнаружения атома примеси (серебра или меди) в позиции замещаемого им атома (в данном случае – свинца). Цифры (1) и (2) на данных рисунках указывают на группу исследуемых кристаллов: Pb_{1 - x}Ag_xS соответствует цифре (1) и $Pb_{1-x}Cu_xS - (2)$. Штрихпунктирная и штриховая линии на рис. 1–3 представляют полиномы, найденные методом наименьших квадратов. На рис. 4 такие же линии соответствуют графикам функций, описывающих приближенно теоретическую зависимость коэффициента Холла от концентрации серебра и меди соответственно.

На рис. 1 представлены экспериментальные точки зависимостей коэффициента Зеебека *S* от концентрации примесей серебра и меди в образцах Pb_{1-x}Ag_xS (*I*) и Pb_{1-x}Cu_xS (*2*). Здесь видно, что в образце группы (1) со значением x = 0.0045наблюдается смена типа проводимости с электронной (x < 0.0045) на дырочную (x > 0.0045).

Рис. 2. Зависимости удельного сопротивления (ρ) образцов Pb_{1 – x}Ag_xS и Pb_{1 – x}Cu_xS от концентрации примесей (*x*) серебра (*I*) и меди (*2*) при температуре T = 300 K.

Очевидно, что положение уровня Ферми, E_F , для образца $Pb_{0.9955}Ag_{0.0045}S$ соответствует середине запрещенной зоны. При меньших значениях *x* уровень E_F смещается в сторону дна зоны проводимости, а с увеличением *x* – в сторону потолка валентной зоны. В области *x* > 0.0045 величина *S* меняется в более узком диапазоне значений так, что оказывается примерно равной 27 мкВ · К при *x* = 0.011. Такое поведение *S* в этой области концентрации указывает на то, что с увеличением концентрации серебра в кристаллах $Pb_{1-x}Ag_xS$ возрастает количество структурных дефектов.

Как оказалось (рис. 1), примесь меди в PbS приводит к иной зависимости S от x. В исследованных образцах Pb_{1-x}Cu_xS измеренные значения S оставались отрицательными во всем диапазоне значений х, что свидетельствовало об электронном типе проводимости всех образцов этой группы. Однако признаки акцепторного влияния меди проявились в том, что при концентрациях $x \approx 0.006$ величина *S* достигла экстремального значения, что свидетельствовало об уменьшении концентрации свободных электронов относительно исходного уровня, наблюдавшегося в беспримесном кристалле PbS. Отсутствие инверсии типа проводимости во всем исследованном диапазоне концентраций, $0 \le x \le 0.011$, может быть объяснено или сильной самокомпенсацией акцепторного действия меди вследствие образова-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 82 № 7 2018

Рис. 3. Зависимости теплопроводности (κ_{tot}) образцов Pb_{1 – x}Ag_xS и Pb_{1 – x}Cu_xS от концентрации примесей (*x*) серебра (*1*) и меди (*2*) при температуре *T* = = 300 K.

ния дополнительных вакансий серы, или тем, что большинство атомов меди входят в решетку PbS в электронейтральном состоянии. Не исключается также возможность образования в объемах образцов $Pb_{1-x}Cu_xS$ сложных кластеров примесной меди.

Экспериментальные концентрационные зависимости удельного сопротивления ρ и теплопроводности κ_{tot} , определенные для образцов групп (1) и (2) при T = 300 K, представлены на рис. 2 и 3. Измерения показали, что в ряду образцов группы (1) образец $Pb_{0.9955}Ag_{0.0045}S$ имеет максимальное удельное сопротивление ρ, примерно равное 87 мОм · см. В этом же образце наблюдается минимальное значение теплопроводности, $\kappa_{tot}(x =$ $= 0.0045) \approx 1.7$ Вт · м⁻¹ · К⁻¹. Максимальное значение ρ для образцов группы (2) примерно равно 35 мОм · см и соответствует $x \approx 0.01$, в то время как минимальное значение теплопроводности для образцов этой группы примерно равно $2.05 \text{ Bt} \cdot \text{м}^{-1} \cdot \text{K}^{-1}$ и наблюдается оно в образце Pb_{0.993}Cu_{0.007}S.

На рис. 4 представлены результаты изучения концентрационных зависимостей коэффициента Холла R_H в образцах исследуемых кристаллов $Pb_{1-x}Ag_xS$ и $Pb_{1-x}Cu_xS$ ($0 \le x \le 0.011$). На данном рисунке показаны положения экспериментальных точек $|R_{H.exp}(x)|$ и графики аппроксими-

Рис. 4. Зависимости абсолютной величины постоянной Холла (R_H) в образцах Pb_{1 – x}Ag_xS и Pb_{1 – x}Cu_xS от концентрации примесей (x) серебра (1) и меди (2) при температуре T = 300 К.

рующих функций $|R_H(x)|$. На явный вид искомых функций $R_{H}(x)$ указывали экспериментальные факты, выявленные нами при изучении зависимостей S(x), $\rho(x)$ и $\kappa_{tot}(x)$. Эти факты в кристаллах $Pb_{1-x}Ag_xS$ и $Pb_{1-x}Cu_xS$, говорят о наличии в исследуемых кристаллах $Pb_{1-x}Ag_xS$ и $Pb_{1-x}Cu_xS$ двух типов носителей заряда: присутствие электронов обусловлено наличием вакансий серы, а дырки возникают вследствие акцепторного действия легирующей примеси, Ag или Cu. При определении вида функций $R_H(x)$ было принято упрощающее предположение о том, что введение в кристалл PbS примесей не меняет исходной концентрации электронов, присутствовавших в выращенном беспримесном кристалле PbS, $n_{H}(x) = n_{H}(0)$. Это предположение кажется уместным, так как условия выращивания для всех образцов поддерживались одинаковыми. Поскольку измерения коэффициента Холла были выполнены в поле B = 0.1 Тл, рассматривалось равенство, справедливое в условиях слабого магнитного поля,

$$R_H = \frac{A_p p - A_n n b^2}{e(p+nb)^2},\tag{1}$$

где *е* – заряды дырки или электрона (они предполагаются равными); *р* и *n* – их концентрации; *b* = $= |\mu_n/\mu_p|, \mu_p$ и μ_n – подвижности; A_p и A_n – факторы Холла $(A_p = \langle \tau_p^2 \rangle / \langle \tau_p \rangle^2$ и $A_n = \langle \tau_n^2 \rangle / \langle \tau_n \rangle^2)$, учиты-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 82 № 7 2018

вающие зависимости времен релаксации электронов (τ_p) и дырок (τ_n) от их импульса и энергии. Поскольку величину *А* экспериментально определить трудно, при описании результатов, получаемых методом Холла, обычно полагают $A_p = A_n = 1$. В результате получается равенство:

$$R_{H} = \frac{p_{H} - n_{H}b}{e(p_{H} + n_{H}b)^{2}},$$
 (2)

где p_H и n_H называют холловскими концентрациями дырок и электронов соответственно. Если предположить, что при исследуемых концентрациях примесей веричина $b = |\mu_n/\mu_p|$ меняется мало, и определить b по известным из литературы значениям μ_p и μ_n , характерным для кристаллов PbS при T = 300 К ($\mu_p = 620 \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$ и $\mu_n = 610 \text{ см}^2 \cdot \text{B}^{-1} \cdot \text{c}^{-1}$), то в расчетах можно принять $b \approx 1$. Кроме того, если рассматривать только ситуации, где $p_H \ll n_H$ или $p_H \gg n_H$, то можно использовать приблизительное равенство ($p_H + n_H$) $\approx (p_H - n_H)$. Учитывая также высказанное выше предположение, что $n_H = n_H(0)$, можно получить приближенное равенство

$$R_H \approx \frac{1}{e\{p_H - n_H(0)\}}.$$
 (3)

Поскольку установлено, что серебро и медь могут рассматриваться как акцепторные примеси, в искомую функцию можно ввести параметр, называемый коэффициентом эффективности легирования [6], $K_{dop} = p_H/N_{imp}$, где N_{imp} – число атомов примеси в 1 см³ исследуемых кристаллов. В случае примесей в кристалле PbS $N_{imp}(x) = x1.86 \cdot 10^{22}$ см⁻³. Для кристаллов Pb_{1-x}Ag_xS величина N_{imp} соответствует N_{Ag} , для Pb_{1-x}Cu_xS – $N_{imp} \equiv N_{Cu}$. В результате получается искомая функция

$$R_H \approx \frac{1}{e\{1.86 \cdot 10^{22} K_{dop} x - n_H(0)\}},$$
 (4)

где в рассматриваемом случае $n_H(0) = 1.5 \cdot 10^{18} \text{ см}^{-3}$.

На рис. 4 штрихпунктирной линией показан график функции (4) при значении $K_{dop} = 0.018$. Видно, что эта функция наилучшим образом описывает экспериментальные точки $R_{H.exp}(x)$, полученные для образцов $Pb_{1-x}Ag_xS$ с концентрациями серебра 0 < x < 0.0045. В точке $x \approx 0.0045$ функция (4) терпит разрыв, что означает реализацию приближенного равенства $p_H \approx n_H(0)$, где принятые выше допущения не выполняются (точные расчеты с использованием равенства (1) дают значение R_H близкое к нулю). В диапазоне концентраций 0.0045 > x > 0.011 экспериментальные точки оказались расположенными выше данного графика, что указывает на уменьшение величины

 K_{dop} по мере роста концентрации серебра. По-видимому, при повышенных концентрациях доля атомов серебра, оказывающих на кристалл акцепторное влияние, уменьшается из-за образования в его объеме кластеров серебра. Тем не менее результаты изучения зависимостей $R_{H.exp}$ (x) для образцов Pb_{1-x}Ag_xS приводят к выводу о том, что серебро явно влияет на электротранспортные свойства кристалла PbS как акцепторная примесь.

Штриховой линией на рис. 4 показан график функции (4) при значении $K_{dop} = 0.006$. Можно заметить, что функция (4) при указанном значении K_{dop} хорошо описывает положения точек $|R_{H.exp}(x)|$ для образцов Pb_{1-x}Cu_xS практически во всем диапазоне исследованных концентраций меди. Однако по сравнению с серебром коэффициент эффективности легирования для меди оказался существенно ниже.

Таким образом, в настоящей работе установлено, что серебро в смешанных кристаллах $Pb_{1-x}Ag_xS$ ($0 < x \le 0.011$) явно выступает как акцептор, хотя эффективность его акцепторного действия не высока, $p_H/N_{Ag} \approx 0.018$. Найдено, что при уровнях легирования $x \approx 0.004-0.005$ у образцов $Pb_{1-x}Ag_xS$ наблюдается существенное увеличение удельного сопротивления и заметное уменьшение теплопроводности.

Медь в образцах $Pb_{1-x}Cu_xS$ не приводит к смене проводимости с электронной на дырочную, по крайней мере в диапазоне концентраций $0 < x \le 0.011$, что объясняется чрезвычайно низким значением p_H/N_{Cu} (≈ 0.006). Однако эта примесь также проявляет признаки акцепторного влияния, поскольку обеспечивает заметное снижение исходной концентрации свободных электронов, присутствовавших в кристалле PbS до легирования, и, как следствие, повышение удельного сопротивления этого кристалла по мере роста уровня его легирования. Теплопроводность образцов $Pb_{1-x}Cu_xS$ понижается незначительно и происходит это при уровнях легирования $x \approx 0.004-0.006$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Алиев Ф.Ф., Гасанов Г.А. // ФТП. 2012. Т. 46. С. 313.
- Zhang Q., Cao F., Liu W. et al. // J. Am. Chem. Soc. 2012. V. 134. P. 10031.
- Yamini S.A., Ikeda T., LaLonde A. et al. // J. Mater. Chem. A. 2013. V. 1. P. 8725.
- Skelton J.M., Parker S.C., Togo A., Tanaka I., Walsh A. // Phys. Rev. B. 2014. V. 89. P. 205203.
- Wang H., Schechtel E., Pei Y., Snyder G.J. // Adv. Energy Mater. 2013. V. 3. P. 488.
- 6. Шаров М.К. // ФТП. 2012. Т. 46. С. 613.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 82 № 7 2018