NETS OF GRADED C^{*}-ALGEBRAS OVER PARTIALLY ORDERED SETS

(C) S. A. GRIGORYAN, E. V. LIPACHEVA, A. S. SITDIKOV

Abstract

The paper deals with C^{*}-algebras generated by a net of Hilbert spaces over a partially ordered set. The family of those algebras constitutes a net of C^{*}-algebras over the same set. It is shown that every such an algebra is graded by the first homotopy group of the partially ordered set. We consider inductive systems of C^{*}-algebras and their limits over maximal directed subsets. We also study properties of morphisms for nets of Hilbert spaces as well as nets of C^{*}-algebras.

§1. Introduction

The paper is devoted to the construction and the study of nets consisting of C^{*}-algebras generated by nets of Hilbert spaces over partially ordered sets. One of the directions in the applications of such nets is algebraic quantum field theory. In a spacetime the family of all open bounded regions is a partially ordered set under the inclusion relation $[1,2,3]$. One associates to these regions the C^{*}-algebras of local observables which can be measured in the pertinent regions. The family of all those algebras indexed by the regions of a spacetime is called a net of C^{*}-algebras.

The main objects of the study in the paper are the local C^{*}-algebras (see $\S 5)$ generated by a triple

$$
\left(K, H_{a}, \gamma_{b a}\right)_{a \leqslant b \in K}
$$

where K is a partially ordered set, H_{a} is a Hilbert space and $\gamma_{b a}: H_{a} \rightarrow H_{b}$ is an isometric embedding. According to papers [4, 5, 6], we call that triple a net of Hilbert spaces over K. The family of the C^{*}-algebras constitutes a net over the same set K. Each algebra in this net is graded by the first homotopy group $\pi_{1}(K)$ for the partially ordered set K.

Moreover, we introduce the notion of the corona for a net consisting of the local C^{*}-algebras. The algebras in the corona are called the quasi-local algebras. It is shown that these algebras are also $\pi_{1}(K)$-graded.

[^0]The motivation for our work comes from papers $[4,5,6]$ in which the nets of the C^{*}-algebras of observables are studied for a curved spacetime and a spacetime manifold with specific topological features.

We have studied earlier the C^{*}-algebras generated by representations of ordered semigroups $[7,8,9,10,11,12]$. The present paper is a continuation of the study begun in the article [13]. There we dealt with the C^{*}-algebra generated by the path semigroup in a partially ordered set.

§2. Paths and loops on a partially ordered set

Let K be a partially ordered set with an order relation \leqslant, which is reflexive, antisymmetric and transitive. Elements a and b are said to be comparable in K, if $a \leqslant b$ or $b \leqslant a$. The set K is said to be upward directed, if for any $a, b \in K$ there exists $c \in K$ such that $a \leqslant c$ and $b \leqslant c$.

Further, we define paths on K. Ordered pairs (b, a) for $b \leqslant a$ and $\overline{(b, a)}$ for $b \geqslant a$ are called elementary paths on K. Here, the elements $\partial_{1} p=a$ and $\partial_{0} p=b$ are called, respectively, the starting point and the ending point of the elementary path. We define the reverse elementary paths $s^{-1}=\overline{(a, b)}$ for $s=(b, a)$ and $s^{-1}=(a, b)$ for $s=\overline{(b, a)}$. A pair $(a, a)=\overline{(a, a)}=i_{a}$ is called a trivial path.

Throughout we consider sequences of elementary paths of the following form:

$$
\bar{p}=s_{n} * s_{n-1} * \ldots * s_{1}
$$

where $\partial_{0} s_{i-1}=\partial_{1} s_{i}$ for $i=2, \ldots, n$. Here, the elements $\partial_{1} \bar{p}=\partial_{1} s_{1}$ and $\partial_{0} \bar{p}=\partial_{0} s_{n}$ are, respectively, the starting point and the ending point of the sequence \bar{p}. The reverse sequence defined as the sequence

$$
\bar{p}^{-1}=s_{1}^{-1} * s_{2}^{-1} * \ldots * s_{n}^{-1}
$$

Extending the operation "*", we define the multiplication operation for the sequences of elementary paths $\bar{p}=s_{n} * \ldots * s_{k}$, and $\bar{q}=s_{k-1} * \ldots * s_{1}$ satisfying the condition $\partial_{1} s_{k}=\partial_{1} \bar{p}=\partial_{0} \bar{q}=\partial_{0} s_{k-1}$ as follows: $\bar{p} * \bar{q}=s_{n} * \ldots * s_{k} * s_{k-1} *$ $\ldots * s_{1}$.

We denote by \bar{S} the set of all sequences of elementary paths endowed with the operation "*". It is clear that the operation "*" is associative.

Let us define an equivalence relation on the set \bar{S}. To this end, for all elements $a, b, c \in K$ such that $a \leqslant b \leqslant c$, we put

$$
\begin{align*}
& \overline{(a, b)} *(b, c) \sim(a, c) ; \tag{1}\\
& \overline{(c, b)} * \overline{(b, a)} \sim \overline{(c, a)} \tag{2}\\
& (a, b) * \overline{(b, a)} \sim i_{a} ; \tag{3}\\
& \overline{(b, a)} *(a, b) \sim i_{b} . \tag{4}
\end{align*}
$$

It is worth noting that (1)-(4) imply the following equivalences:

$$
\begin{aligned}
(a, b) * i_{b} & \sim(a, b) ; \\
i_{a} *(a, b) & \sim(a, b) ; \\
\overline{(b, a)} * i_{a} & \sim \overline{(b, a)} ; \\
i_{b} * \overline{(b, a)} & \sim \overline{(b, a)} ; \\
i_{a} * i_{a} & \sim i_{a} .
\end{aligned}
$$

We put $\bar{p} \sim \bar{q}$, where $\bar{p}, \bar{q} \in \bar{S}$, if the sequence \bar{p} can be obtained from the sequence \bar{q} (and \bar{q} from \bar{p}) by means of a finite number of relations (1)-(4).

One can easily verify that the following properties are fulfilled in \bar{S} :

1. for every sequence $\bar{p} \in \bar{S}$ with $\partial_{0} \bar{p}=a$ and $\partial_{1} \bar{p}=b$ the relations $\bar{p}^{-1} * \bar{p} \sim$ $i_{b}, \bar{p} * \bar{p}^{-1} \sim i_{a}$ hold;
2. for every sequence $\bar{p} \in \bar{S}$, with $\partial_{0} \bar{p}=a$ and $\partial_{1} \bar{p}=b$ the relations $i_{a} * \bar{p} \sim$ $\bar{p} \sim \bar{p} * i_{b}$ hold.

Let $p=[\bar{p}]$ be an equivalence class containing a sequence of elementary paths \bar{p}. For equivalence classes p and q we define the multiplication operation "*" as follows: if $\partial_{1} \bar{p}=\partial_{0} \bar{q}$ then we set

$$
p * q=[\bar{p} * \bar{q}]=\{\bar{s} \sim \bar{p} * \bar{q} \mid \bar{s} \in \bar{S}\}
$$

Further, let us consider the quotient set of \bar{S} by the equivalence relation. It is obvious that the quotient set \bar{S} / \sim is a groupoid. Adding a formal symbol 0 and putting

$$
p * 0=0, \quad 0 * p=0
$$

for every $p \in \bar{S} / \sim$, one may turn the groupoid \bar{S} / \sim into a semigroup denoted by

$$
S=\bar{S} / \sim \cup\{0\}
$$

Then for every $p, q \in S$ we have

$$
p * q= \begin{cases}{[\bar{p} * \bar{q}],} & \text { if } p \neq 0, q \neq 0 \text { and } \partial_{1} \bar{p}=\partial_{0} \bar{q} \\ 0, & \text { otherwise }\end{cases}
$$

The semigroup S is called the path semigroup. An element $p \in S$ is called a path from the point $\partial_{1} p=\partial_{1} \bar{p}$ to the point $\partial_{0} p=\partial_{0} \bar{p}$. Thus, we identify all equivalent sequences of elementary paths. That equivalence class is called a path on K.

An element $\bar{p} \in \bar{S}$ is called a loop in \bar{S} if the equality $\partial_{0} \bar{p}=\partial_{1} \bar{p}$ holds. For $a \in K$ we denote by \bar{G}_{a} the set of all loops whose base point is a. The set \bar{G}_{a} is a semigroup. For $a \in K$ we denote by G_{a} the set of all equivalence classes of loops whose base point is a. In [13] it is shown G_{a} is a subgroup in S with the unit $\left[i_{a}\right]$ and other properties of G_{a} and S are described. In particular, it is proved that if K is an upward directed set then G_{a} is trivial.

The set K is said to be connected provided that for every $a, b \in K$ there exists a path p such that $\partial_{0} p=a, \partial_{1} p=b$. It is shown in [13] that for a connected set K the isomorphism $G_{a} \cong G_{b}$ holds whenever $a, b \in K$. In particular, the mapping $\sigma_{b a}: G_{a} \rightarrow G_{b}$ defined by the formula

$$
\begin{equation*}
\sigma_{b a}(p)=[\overline{(b, a)} * \bar{p} *(a, b)] \tag{5}
\end{equation*}
$$

is isomorphism, where $a \leqslant b, \bar{p} \in p$.
In what follows, we assume that the set K is connected.
The notion of the first homotopy (fundamental) group $\pi_{1}(K)$ for a partially ordered set K is given in $[4,6]$. The group $\pi_{1}(K)$ is a quotient set of the set of all paths on K that start and end at the same point by the homotopy equivalence relation. Two paths are said to be homotopy equivalent if one can be obtained from the other by a finite number of elementary deformations (see $[4,6])$.

Theorem 1. For every $a \in K$ there exists an isomorphism $\pi_{1}(K) \cong G_{a}$.
Proof. To prove the theorem it is sufficient to show that the equivalence relation given by formulas (1)-(4) coincides with the homotopy equivalence.

In [13] the authors show that if two paths are in the equivalence relation defined by (1)-(4) then they are homotopy equivalent.

For the converse implication we note that the elementary paths (a, b) and $\overline{(b, a)}$ are 1 -simplices with the support b. Therefore every equivalence (1)-(4) is an elementary deformation of paths.

§3. Mappings and cycles on a Hilbert space

Let a net of Hilbert spaces

$$
\left(K, H_{a}, \gamma_{b a}\right)_{a \leqslant b \in K}
$$

over K be given. Here, H_{a} is a Hilbert space with a basis $\left\{e_{n}^{a}\right\}_{n=1}^{\infty}$, and

$$
\gamma_{b a}: H_{a} \rightarrow H_{b}
$$

is an isometric embedding for $a \leqslant b$, which transforms the basis $\left\{e_{n}^{a}\right\}_{n=1}^{\infty}$ into the basis $\left\{e_{n}^{b}\right\}_{n=1}^{\infty}$ and satisfies the equation

$$
\gamma_{c a}=\gamma_{c b} \circ \gamma_{b a}
$$

whenever $a \leqslant b \leqslant c$. If $a=b$ then $\gamma_{b a}$ is the identity mapping.
For every $a \in K$ we define the set $S_{a}=\left\{p \in S \mid \partial_{0} p=a\right\}$.
Further, let us consider the Hilbert space of all square summable complexvalued functions on S_{a}

$$
l^{2}\left(S_{a}\right)=\left\{f:\left.S_{a} \rightarrow \mathbb{C}\left|\sum_{p \in S_{a}}\right| f(p)\right|^{2}<\infty\right\}
$$

with the inner product given by

$$
\langle f, g\rangle=\sum_{p \in S_{a}} f(p) \overline{g(p)}
$$

The family of functions $\left\{e_{p}\right\}_{p \in S_{a}}$ is an orthonormal basis in $l^{2}\left(S_{a}\right)$. Here, the equality $e_{p}\left(p^{\prime}\right)=\delta_{p, p^{\prime}}$ holds for $p^{\prime} \in S_{a}$, where $\delta_{p, p^{\prime}}$ stands for the Kronecker symbol.

Let us consider the space $\mathcal{H}=\bigoplus_{a \in K}\left(H_{a} \otimes l^{2}\left(S_{a}\right)\right)$. For every pair $a, b \in K$ satisfying the condition $a \leqslant b$ we define the partial isometry $\chi_{a}^{b}: \mathcal{H} \rightarrow \mathcal{H}$ as follows:

$$
\chi_{a}^{b}\left(h \otimes e_{p}\right)= \begin{cases}\gamma_{b a}(h) \otimes e_{[(\overline{[b, a)} * \bar{p}]}, & \text { if } h \in H_{a} \text { and } \partial_{0} p=a, \bar{p} \in p \\ 0, & \text { otherwise }\end{cases}
$$

We note that the following inclusion holds:

$$
\chi_{a}^{b}\left(H_{a} \otimes l^{2}\left(S_{a}\right)\right) \subseteq H_{b} \otimes l^{2}\left(S_{b}\right)
$$

For the operator χ_{a}^{b} the conjugate operator $\chi_{a}^{b *}: \mathcal{H} \rightarrow \mathcal{H}$ is defined by the formula

$$
\chi_{a}^{b *}\left(h \otimes e_{p}\right)= \begin{cases}h^{\prime} \otimes e_{[(a, b) * \bar{p}]}, & \text { if there exists } h^{\prime} \in H_{a} \text { such that } \\ & h=\gamma_{b a}\left(h^{\prime}\right) \text { and } \partial_{0} p=b, \bar{p} \in p \\ 0, & \text { otherwise }\end{cases}
$$

Lemma 1. The following assertions hold.
(1) $\chi_{a}^{c}=\chi_{b}^{c} \chi_{a}^{b}$ whenever $a \leqslant b \leqslant c$.
(2) $\chi_{a}^{c *}=\chi_{a}^{b *} \chi_{b}^{c *}$ whenever $a \leqslant b \leqslant c$.
(3) $\chi_{a}^{b *} \chi_{a}^{b}=I_{H_{a}} \otimes I_{a}$, where $I_{H_{a}} \otimes I_{a}: \mathcal{H} \rightarrow H_{a} \otimes l^{2}\left(S_{a}\right)$ is a projection (a surjection).
(4) $\chi_{a}^{b} \chi_{a}^{b *}=P_{H_{b}} \otimes I_{b}$, where $P_{H_{b}} \otimes I_{b}: \mathcal{H} \hookrightarrow H_{b} \otimes l^{2}\left(S_{b}\right)$ is a projection (an injection).

Proof. (1) It follows from the equality $\gamma_{c a}=\gamma_{c b} \circ \gamma_{b a}$ and the relation $\overline{(c, a)} * \bar{p} \sim$ $\overline{(c, b)} * \overline{(b, a)} * \bar{p}$.
(2) Assume that the condition $\chi_{a}^{c *}\left(h \otimes e_{p}\right)=h^{\prime \prime} \otimes e_{[(a, c) * \bar{p}]} \neq 0$ holds. Then we have $h=\gamma_{c a}\left(h^{\prime \prime}\right)=\gamma_{c b} \circ \gamma_{b a}\left(h^{\prime \prime}\right)=\gamma_{c b}\left(h^{\prime}\right)$. Consequently, we obtain the equalities

$$
\chi_{a}^{b *} \chi_{b}^{c *}\left(h \otimes e_{p}\right)=\chi_{a}^{b *}\left(h^{\prime} \otimes e_{[(b, c) * \bar{p}]}\right)=h^{\prime \prime} \otimes e_{[(a, b) *(b, c) * \bar{p}]}=h^{\prime \prime} \otimes e_{[(a, c) * \bar{p}]} .
$$

(3) For every element $h \otimes e_{p} \in H_{a} \otimes l^{2}\left(S_{a}\right)$ one has the equalities $\chi_{a}^{b *} \chi_{a}^{b}(h \otimes$ $\left.e_{p}\right)=\chi_{a}^{b *}\left(\gamma_{b a}(h) \otimes e_{[(\overline{(b, a)} * \bar{p}]}\right)=h \otimes e_{[(a, b) *(\overline{b, a} * \bar{p}]}=h \otimes e_{p}$.
(4) Take an element $h \otimes e_{p} \in H_{b} \otimes l^{2}\left(S_{b}\right)$. If the property $\chi_{a}^{b} \chi_{a}^{b *}\left(h \otimes e_{p}\right) \neq 0$ is fulfilled then one can easily see that the equality $\chi_{a}^{b} \chi_{a}^{b *}\left(h \otimes e_{p}\right)=h \otimes e_{p}$ is valid. Hence, the inclusion $\chi_{a}^{b} \chi_{a}^{b *}\left(H_{b} \otimes l^{2}\left(S_{b}\right)\right) \subseteq H_{b} \otimes l^{2}\left(S_{b}\right)$ holds.

The set of isometries $\left\{\chi_{a}^{b}\right\}_{a, b \in K, a \leqslant b}$ can be enlarged to the set $\left\{\chi_{\bar{p}}\right\}_{\bar{p} \in \bar{S}}$ as follows. Take an arbitrary sequence of elementary paths

$$
\bar{p}=\left(a_{2 n}, a_{2 n-1}\right)^{l_{2 n-1}} * \ldots *\left(a_{3}, a_{2}\right)^{l_{2}} *\left(a_{2}, a_{1}\right)^{l_{1}}
$$

where $l_{k}=0,1$ and $\left(a_{k+1}, a_{k}\right)^{0}=\left(a_{k+1}, a_{k}\right), \quad\left(a_{k+1}, a_{k}\right)^{1}=\overline{\left(a_{k+1}, a_{k}\right)}, \quad k=$ $1, \ldots, 2 n-1$. Then we have

$$
\chi_{\bar{p}}=\left(\chi_{a_{2 n}}^{a_{2 n-1}}\right)^{l_{2 n}-1} \ldots\left(\chi_{a_{2}}^{a_{3}}\right)^{l_{2}}\left(\chi_{a_{2}}^{a_{1}}\right)^{l_{1}}
$$

where $\left(\chi_{a_{k+1}}^{a_{k}}\right)^{0}=\chi_{a_{k+1}}^{a_{k}{ }^{*}},\left(\chi_{a_{k+1}}^{a_{k}}\right)^{1}=\chi_{a_{k+1}}^{a_{k}}, k=1, \ldots, 2 n-1$.
We note that the equality $\chi_{\bar{p}}^{*}=\chi_{\bar{p}^{-1}}$ holds.
The set $\left\{\chi_{\bar{p}}\right\}_{\bar{p} \in \bar{S}}$ is closed with respect to the multiplication operation: $\chi_{\bar{p}} \chi_{\bar{q}}=\chi_{\bar{p} * \bar{q}}$ provided that the condition $\partial_{1} \bar{p}=\partial_{0} \bar{q}$ holds.

The set

$$
H_{\bar{p}}=\left\{h \in H_{\partial_{1} \bar{p}} \mid \chi_{\bar{p}}\left(h \otimes e_{q}\right) \neq 0 \text { if } \partial_{0} q=\partial_{1} \bar{p}\right\}
$$

is called the domain of the sequence \bar{p}.
Obviously, the set $H_{\bar{p}}$ is a Hilbert space. It is worth noting that, in general, we have the condition $H_{\bar{p}} \neq H_{\bar{q}}$ for two distinct sequences $\bar{p}, \bar{q} \in \bar{S}$, which are equivalent, i.e., $\bar{p} \sim \bar{q}$. For instance, $H_{\bar{p}}=H_{a}$ if $\bar{p}=(a, b) * \overline{(b, a)}$ with $a \leqslant b$, and $H_{\bar{q}} \subseteq H_{a}$ for $\bar{q}=\overline{(a, c)} *(c, a)$ with $c \leqslant a$. Here, the equivalences $\bar{p} \sim i_{a} \sim \bar{q}$ hold.

Thus, in general, one has the property $\chi_{\bar{p}} \neq \chi_{\bar{q}}$ for sequences satisfying the conditions $\bar{p} \sim \bar{q}, \bar{p} \neq \bar{q}$.

Lemma 2. The following assertions hold:
(1) the operator $\chi_{i_{a}}$ is the identity mapping on $H_{a} \otimes l^{2}\left(S_{a}\right)$;
(2) if $\bar{p} \sim \bar{q}$ then $\chi_{\bar{p}}\left(h \otimes e_{s}\right)=\chi_{\bar{q}}\left(h \otimes e_{s}\right)$ for every $h \in H_{\bar{p}} \cap H_{\bar{q}}$ and s such that $\partial_{0} s=\partial_{1} \bar{p}=\partial_{1} \bar{q}$;
(3) if $\bar{p} \sim \bar{q}$ and $\gamma_{b a}: H_{a} \rightarrow H_{b}$ is an isomorphism for all $a \leqslant b \in K$, then the equality $\chi_{\bar{p}}=\chi_{\bar{q}}$ holds.

Proof. (1) It is obvious.
(2) It is enough to prove the assertion for equivalences (1)-(4).

To this end, we assume that $a \leqslant b \leqslant c$. Then the equivalence $(a, b) *(b, c) \sim$ (a, c) holds. Take an element $h \otimes e_{s}$ such that

$$
\chi_{a}^{b *} \chi_{b}^{c *}\left(h \otimes e_{s}\right) \neq 0 \quad \text { and } \quad \chi_{a}^{c *}\left(h \otimes e_{s}\right) \neq 0
$$

It follows from item 2 of Lemma 1 that one has the equality

$$
\chi_{a}^{b *} \chi_{b}^{c *}\left(h \otimes e_{s}\right)=\chi_{a}^{c *}\left(h \otimes e_{s}\right)
$$

Item 1 of Lemma 1 implies the assertion for the equivalence $\overline{(c, b)} * \overline{(b, a)} \sim \overline{(c, a)}$. Similarly, for equivalences (3) and (4) the assertion follows from items 3 and 4 of Lemma 1.
(3) It follows from (2) that equivalent deformations of the sequence \bar{p} do not change values at points of the space $H_{\partial_{1} \bar{p}}$. Those deformations only restrict or extend the domain $H_{\bar{p}}$ of the sequence. Furthermore, if $\gamma_{b a}: H_{a} \rightarrow H_{b}$ is an isomorphism whenever $a \leqslant b \in K$, then we have the equalities $H_{\bar{p}}=H_{\bar{q}}=$ $H_{\partial_{1} \bar{p}}$. Consequently, one gets the equality $\chi_{\bar{p}}=\chi_{\bar{q}}$, as required.

Theorem 2. The mapping $\pi: \bar{S} \rightarrow B(\mathcal{H})$ given by $\pi(\bar{p})=\chi_{\bar{p}}$ is a representation of $(\bar{S}, *)$ in the algebra of bounded operators $B(\mathcal{H})$. If each embedding $\gamma_{b a}: H_{a} \rightarrow H_{b}$ is an isomorphism for $a \leqslant b \in K$, then the mapping π^{*} defined by $\pi^{*}([\bar{p}])=\pi(\bar{p})$ is a representation of the groupoid \bar{S} / \sim.

Proof. Take $\bar{p}, \bar{q} \in \bar{S}$ such that $\partial_{1} \bar{p}=\partial_{0} \bar{q}$. Then we have the equalities

$$
\pi(\bar{p} * \bar{q})=\chi_{\bar{p} * \bar{q}}=\chi_{\bar{p}} \chi_{\bar{q}}=\pi(\bar{p}) \pi(\bar{q})
$$

Assume that all $\gamma_{b a}: H_{a} \rightarrow H_{b}$ are isomorphisms for all $a \leqslant b \in K$. Then, by Lemma 2, we have the equality $\chi_{\bar{p}}=\chi_{\bar{q}}$ for $\bar{p} \sim \bar{q}$. Hence, the mapping π^{*} in the statement of the theorem is well-defined. Moreover, it is a representation of the groupoid \bar{S} / \sim.

In the sequel, if a sequence \bar{p} is a loop, then the mapping $\chi_{\bar{p}}$ is called a cycle. We note that the equalities

$$
\chi_{\bar{p}} \chi_{\bar{p}}^{*} \chi_{\bar{p}}=\chi_{\bar{p}}, \quad \chi_{\bar{p}}^{*} \chi_{\bar{p}} \chi_{\bar{p}}^{*}=\chi_{\bar{p}}^{*}
$$

hold for every $\bar{p} \in \bar{G}_{a}$. Therefore the set of cycles $\left\{\chi_{\bar{p}}\right\}_{\bar{p} \in \bar{G}_{a}}$ is a regular semigroup. It is clear that the element $\chi_{\bar{p}}^{*}$ is unique for each cycle $\chi_{\bar{p}}$. As a consequence, the semigroup of cycles is inverse.

If the equivalence $\bar{p} \sim i_{a}$ holds for some $a \in K$, then the cycle $\chi_{\bar{p}}$ is said to be trivial.

Theorem 3. Every trivial cycle $\chi_{\bar{p}}$ is a projection of the form

$$
\chi_{\bar{p}}=Q_{\bar{p}} \otimes I_{a},
$$

where $\bar{p} \in \bar{G}_{a}$ and $Q_{\bar{p}}$ is a projection on the domain $H_{\bar{p}}$.
Proof. By Lemma 2, since $\bar{p} \sim i_{a}$ for an element $a \in K$ the cycle $\chi_{\bar{p}}$ is a projection.

Corollary 1. For every loop \bar{p} the equality $\chi_{\bar{p}}^{*} \chi_{\bar{p}}=Q_{\bar{p}} \otimes I_{a}$ holds, where $Q_{\bar{p}}$ is a projection on the domain $H_{\bar{p}^{-1} * \bar{p}}=H_{\bar{p}}$.

Proof. We note that the equality $\chi_{\bar{p}}^{*} \chi_{\bar{p}}=\chi_{\bar{p}^{-1} * \bar{p}}$ and the equivalence $\bar{p}^{-1} * \bar{p} \sim$ i_{a} hold for an element $a \in K$.

Corollary 2. If $\bar{p}, \bar{q} \in \bar{G}_{a}$ and $\bar{p} \sim \bar{q}$, then the operator $\chi_{\bar{p}}^{*} \chi_{\bar{q}}=P_{H_{a}} \otimes I_{a}$ is a projection.

Proof. It is sufficient to note that the following equivalences hold:

$$
\bar{p}^{-1} * \bar{q} \sim \bar{p}^{-1} * \bar{p} \sim i_{a} .
$$

Corollary 3. For all trivial cycles $\chi_{\bar{p}}$ and $\chi_{\bar{q}}$ one has the equality

$$
\chi_{\bar{p}} \chi_{\bar{q}}=\chi_{\bar{q}} \chi_{\bar{p}}
$$

Theorem 4. If K is an upward directed set then every cycle $\chi_{\bar{p}}$ is a projection of the form $\chi_{\bar{p}}=P_{H_{a}} \otimes I_{a}$, where $\bar{p} \in \bar{G}_{a}$ and $P_{H_{a}}$ is a projection on the domain $H_{\bar{p}}$.

Proof. In [13], it is shown that if K is an upward directed set then for each loop \bar{p} one has the equivalence $\bar{p} \sim i_{a}$ for some $a \in K$. This means that every cycle $\chi_{\bar{p}}$ is trivial. Applying Theorem 3, we obtain the assertion of the theorem.

A cycle $\chi_{\bar{p}}$ is said to be finite if the domain $H_{\bar{p}}$ is a finite-dimensional linear space.

A cycle $\chi_{\bar{p}}$ is said to be nilpotent if there exists a natural number m such that the equality $\chi_{\bar{p}}^{m}=0$ holds.
$\S 4 . C^{*}$-generated by cycles
In what follows we suppose that the set K is not upward directed.
In general case, for $\bar{p} \in \bar{G}_{a}$ every cycle $\chi_{\bar{p}}$ has the form $\chi_{\bar{p}}=U_{\bar{p}} \otimes T_{\bar{p}}$, where $U_{\bar{p}}: H_{a} \rightarrow H_{a}$ is a partial isometry and $T_{\bar{p}}: l^{2}\left(S_{a}\right) \rightarrow l^{2}\left(S_{a}\right)$ is a unitary operator corresponding to the loop \bar{p} such that $T_{\bar{p}} e_{q}=e_{[\bar{p} * \bar{q}]}$, where $\bar{q} \in q$. By Theorem 3, if a cycle $\chi_{\bar{p}}$ is trivial then we may write the equality $\chi_{\bar{p}}=Q_{\bar{p}} \otimes I_{a}$, where $Q_{\bar{p}}$ is a projection.

Assume that we are given two equivalent loops $\bar{p} \sim \bar{q}$. Then one has the equality $T_{\bar{p}}=T_{\bar{q}}$, but, in general, we have $U_{\bar{p}} \neq U_{\bar{q}}$. Corollary 1 implies the equalities $\chi_{\bar{p}}^{*} \chi_{\bar{p}}=Q_{\bar{p}} \otimes I_{a}$ and $\chi_{\bar{q}}^{*} \chi_{\bar{q}}=Q_{\bar{q}} \otimes I_{a}$. For loops $\bar{p} \sim \bar{q}$ we define the order relation on cycles: $\chi_{\bar{p}} \leqslant \chi_{\bar{q}}$ if $Q_{\bar{p}} \leqslant Q_{\bar{q}}$. It is easy to verify that one has the relations

$$
\begin{equation*}
\chi_{\bar{p}}^{*} \chi_{\bar{q}} \leqslant \chi_{\bar{q}}^{*} \chi_{\bar{q}} ; \quad \chi_{\bar{p}}^{*} \chi_{\bar{q}} \leqslant \chi_{\bar{p}}^{*} \chi_{\bar{p}} \tag{6}
\end{equation*}
$$

Indeed, to prove the first relation we rewrite it in the form $\chi_{\bar{p}^{-1} * \bar{q}} \leqslant \chi_{\bar{q}^{-1} * \bar{q}}$ and note that $Q_{\bar{p}^{-1} * \bar{q}} \leqslant Q_{\bar{q}}=Q_{\bar{q}^{-1} * \bar{q}}$. To prove the latter we make use of Corollary 2. This statement guarantees that the operator $\chi_{\bar{p}}^{*} \chi_{\bar{q}}$ is a projection. Hence, we obtain $\chi_{\bar{p}}^{*} \chi_{\bar{q}}=\chi_{\bar{q}}^{*} \chi_{\bar{p}} \leqslant \chi_{\bar{p}}^{*} \chi_{\bar{p}}$, as desired.

For loops $\bar{p} \sim \bar{q}$ we define the addition operation $\chi_{\bar{p}} \vee \chi_{\bar{q}}$ of cycles as follows:

1) if the operator $Q_{\bar{p}}+Q_{\bar{q}}$ is also projection, i.e., $Q_{\bar{p}} Q_{\bar{q}}=0$, then we set $\chi_{\bar{p}} \vee \chi_{\bar{q}}=\chi_{\bar{p}}+\chi_{\bar{q}}$;
2) if the condition $Q_{\bar{p}} Q_{\bar{q}}=Q \neq 0$ holds then we put $\chi_{\bar{p}} \vee \chi_{\bar{q}}=\chi_{\bar{p}}+\chi_{\bar{q}}\left(\left(Q_{\bar{q}}-\right.\right.$ $Q) \otimes I_{a}$.

Lemma 3. Let $\bar{p} \sim \bar{q}$ be loops with base point a. Then the addition of cycles $\chi_{\bar{p}} \vee \chi_{\bar{q}}$ can be represented in the form $\chi_{\bar{p}} \vee \chi_{\bar{q}}=U_{\bar{p}, \bar{q}} \otimes T_{\bar{p}}=U_{\bar{p}, \bar{q}} \otimes T_{\bar{q}}$, where $U_{\bar{p}, \bar{q}}: H_{a} \rightarrow H_{a}$ is a partial isometry.

Proof. First, we assume that $Q_{\bar{p}} Q_{\bar{q}}=0$. Since $T_{\bar{p}}=T_{\bar{q}}$ we get the equalities $\chi_{\bar{p}} \vee \chi_{\bar{q}}=\chi_{\bar{p}}+\chi_{\bar{q}}=\left(U_{\bar{p}}+U_{\bar{q}}\right) \otimes T_{\bar{p}}$, where $U_{\bar{p}}+U_{\bar{q}}$ is a partial isometry.

Second, we assume that $Q_{\bar{p}} Q_{\bar{q}}=Q \neq 0$. To prove the lemma it is enough to show that $\left(\chi_{\bar{p}}^{*} \vee \chi_{\bar{q}}^{*}\right)\left(\chi_{\bar{p}} \vee \chi_{\bar{q}}\right)=\widehat{Q} \otimes I_{a}$, where \widehat{Q} is a projection. Indeed, using relations (6), we have the following:

$$
\begin{aligned}
\left(\chi_{\bar{p}} \vee \chi_{\bar{q}}\right)^{*}\left(\chi_{\bar{p}} \vee \chi_{\bar{q}}\right)= & \left(\chi_{\bar{p}}^{*}+\left(\left(Q_{\bar{q}}-Q\right) \otimes I_{a}\right) \chi_{\bar{q}}^{*}\right)\left(\chi_{\bar{p}}+\chi_{\bar{q}}\left(\left(Q_{\bar{q}}-Q\right) \otimes I_{a}\right)\right) \\
\leqslant & Q_{\bar{p}} \otimes I_{a}+\left(\left(Q_{\bar{q}}-Q\right) \otimes I_{a}\right)\left(Q_{\bar{p}} \otimes I_{a}\right) \\
& +\left(Q_{\bar{p}} \otimes I_{a}\right)\left(\left(Q_{\bar{q}}-Q\right) \otimes I_{a}\right) \\
& \quad+\left(\left(Q_{\bar{q}}-Q\right) \otimes I_{a}\right)\left(Q_{\bar{q}} \otimes I_{a}\right)\left(\left(Q_{\bar{q}}-Q\right) \otimes I_{a}\right) \\
= & Q_{\bar{p}} \otimes I_{a}+\left(Q_{\bar{q}}-Q\right) \otimes I_{a}=\widehat{Q} \otimes I_{a} .
\end{aligned}
$$

Further, let E be an infinite subset in an equivalence class $[\bar{p}]$. We denote by $K(E)$ the family of all finite subsets of the set E. For every $A \in K(E)$ we define the operator

$$
\chi_{A}=\bigvee_{\bar{q} \in A} \chi_{\bar{q}}
$$

It follows from Lemma 3 that χ_{A} is a partial isometry satisfying the property

$$
\chi_{A}^{*} \chi_{A}=Q_{A} \otimes I_{a}
$$

where Q_{A} is a projection on the space

$$
H_{E}=\bigcup_{\bar{p} \in E} H_{\bar{p}}
$$

As well as it was done for cycles one can define the order relation for all $A, B \in K(E)$ as follows:

$$
\chi_{A} \leqslant \chi_{B}, \quad \operatorname{if} Q_{A} \leqslant Q_{B}
$$

which is equivalent to the inclusion $A \subseteq B$.
Let χ_{E} be the limit with respect to the net $K(E)$ under the inclusion in the strong operator topology. In particular, if $E=[\bar{p}]$ then we get the operator $\chi_{[\bar{p}]}=\chi_{p}$. In the sequel we shall write

$$
\chi_{p}=\bigvee_{\bar{p} \in p} \chi_{\bar{p}},
$$

where the sum is taken over the entire equivalence class. We shall call this operator the p-cycle.

In the similar way as it was done for cycles, one can define a finite and a nilpotent p-cycles. In what follows, we suppose that every p-cycle χ_{p} is neither finite nor nilpotent. Although particular cycles $\chi_{\bar{p}}$ may be finite or nilpotent.

Lemma 4. The following assertions hold:
(1) if $\bar{p} \sim \bar{q}$ then $\chi_{[\bar{p}]}=\chi_{[\bar{q}]}$;
(2) for every $p \in G_{a}$ the equalities $\chi_{p} \chi_{p}^{*} \chi_{p}=\chi_{p}$ and $\chi_{p}^{*} \chi_{p} \chi_{p}^{*}=\chi_{p}^{*}$ hold;
(3) for every $p, q \in G_{a}$ the relation $\chi_{p} \chi_{q} \leqslant \chi_{p * q}$ holds.

Proof. (1) It follows immediately from the definition of the p-cycle.
(2) To prove the first equality we note that the representation

$$
\chi_{p}^{*} \chi_{p}=Q_{p} \otimes I_{a}
$$

holds, where Q_{p} is the projection on the space

$$
H_{p}=\bigcup_{\bar{p} \in p} H_{\bar{p}}
$$

The proof of the second equation is similar.
(3) It is sufficient to show that the equality $\chi_{p} \chi_{q}=\chi_{E}$ holds for some $E \subseteq p * q$. Indeed, we have the equalities

$$
\chi_{p} \chi_{q}=\bigvee_{\bar{p} \in p, \bar{q} \in q} \chi_{\bar{p}} \chi_{\bar{q}}=\bigvee_{\bar{p} \in p, \bar{q} \in q} \chi_{\bar{p} * \bar{q}} .
$$

Then we get $E=\{\bar{p} * \bar{q} \mid \bar{p} \in p, \bar{q} \in q\} \subseteq\{\bar{s} \mid \bar{s} \in p * q\}=p * q$. This completes the proof.

Further, we denote by $\mathfrak{A}_{a, e}$ the subalgebra in $B(\mathcal{H})$ generated by trivial cycles $\chi_{\bar{p}}$ with $\bar{p} \sim i_{a}$, which is closed in the strong operator topology. This algebra acts nontrivially only on the subspace $H_{a} \otimes l^{2}\left(S_{a}\right)$. We notice that this algebra is commutative and contains, in particular, the operators $\chi_{\bar{p}}^{*} \chi_{\bar{p}}, \chi_{E}^{*} \chi_{E}$ for $E \subseteq[\bar{p}], \chi_{p}^{*} \chi_{p}$ and etc.

Let us consider the family of subspaces

$$
\mathfrak{A}_{a, p}=\mathfrak{A}_{a, e} \chi_{p}, \quad p \in G_{a} .
$$

The subalgebra $\mathfrak{A}_{a, e}$ corresponds to the unit $\left[i_{a}\right]$ of the group G_{a}. We claim that $\mathfrak{A}_{a, p}$ is a Banach space. Indeed, let us take a Cauchy sequence $\left\{A_{n} \chi_{p}\right\}_{n=1}^{\infty}$ in $\mathfrak{A}_{a, p}$. Hence, $\left\{A_{n} \chi_{p} \chi_{p}^{*}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathfrak{A}_{a, e}$ as well. Since $\mathfrak{A}_{a, e}$ is a Banach space the sequence $\left\{A_{n} \chi_{p} \chi_{p}^{*}\right\}$ converges to some element $B \in \mathfrak{A}_{a, e}$. Then, by Lemma 4(2), we have $A_{n} \chi_{p}=A_{n} \chi_{p} \chi_{p}^{*} \chi_{p}$ and the sequence $\left\{A_{n} \chi_{p}\right\}$ converges to the element $B \chi_{p} \in \mathfrak{A}_{a, p}$, as claimed.

Let us denote by \mathfrak{A}_{a} the subalgebra in $B(\mathcal{H})$ generated by elements from the family $\mathfrak{A}_{a, p}, p \in G_{a}$, which is closed with respect to the uniform norm.

The main result of this paragraph is the proof of the assertion stating that the C^{*}-algebra \mathfrak{A}_{a} is a $\pi_{1}(K)$-graded algebra. For the definition of a G-graded C^{*}-algebra, where G is a group, we refer the reader to [14].

Lemma 5. For every $E \subseteq[\bar{p}]=p$ we have $\chi_{E} \in \mathfrak{A}_{a, p}$. In particular, $\chi_{\bar{p}} \in \mathfrak{A}_{a, p}$ for each $\bar{p} \in p$.

Proof. Assume that $E \subseteq p$. Then we have $\chi_{E}^{*} \chi_{E} \in \mathfrak{A}_{a, e}$ as well as $\chi_{E}^{*} \chi_{E} \chi_{p} \in$ $\mathfrak{A}_{a, p}$. Further, one has the equality $\chi_{E}^{*} \chi_{E}=Q_{E} \otimes I_{a}$, where Q_{E} is a projection on the space

$$
H_{E}=\bigcup_{\bar{p} \in E} H_{\bar{p}} \subseteq H_{p}
$$

Consequently, we have the equality $\chi_{E}^{*} \chi_{E} \chi_{p}=\chi_{E}$.
Lemma 6. For every $p, q \in G_{a}$ the inclusion $\chi_{p} \chi_{q} \in \mathfrak{A}_{a, p * q}$ holds.
Proof. In the proof of Lemma 4 one has already seen that the equality

$$
\chi_{p} \chi_{q}=\chi_{E}
$$

holds for some $E \subseteq p * q$. Hence, by Lemma 5, we have the desired inclusion

$$
\chi_{p} \chi_{q} \in \mathfrak{A}_{a, p * q} .
$$

We recall that a conditional expectation is a positive linear operator Φ from a C^{*}-algebra \mathfrak{A} to its subalgebra \mathfrak{A}_{0} such that $\|\Phi\|=1$ and $\Phi(B A C)=B \Phi(A) C$ for all $B, C \in \mathfrak{A}_{0}$ and $A \in \mathfrak{A}$.

Lemma 7. The mapping $\Phi: \mathfrak{A}_{a} \rightarrow \mathfrak{A}_{a, e}$ given by $\Phi(B)=B_{0}$, where

$$
B=B_{0}+\sum_{k} B_{k} \chi_{p_{k}} \in \bigoplus_{p \in G_{a}} \mathfrak{A}_{a, p}, \quad B_{0}, B_{k} \in \mathfrak{A}_{a, e}, \quad p_{k} \neq\left[i_{a}\right]
$$

is a conditional expectation.
Proof. Firstly, let us show that for every B the inequality $\|\Phi(B)\| \leqslant\|B\|$ holds. It follows from the definition of the norm that for every $\varepsilon>0$ there exists an element $h \otimes e_{p} \in H_{a} \otimes l^{2}\left(S_{a}\right)$ with $\left\|h \otimes e_{p}\right\|=1$ such that we have the estimate

$$
\left\|B_{0}\left(h \otimes e_{p}\right)\right\| \geqslant\left\|B_{0}\right\|-\varepsilon
$$

Then we obtain the following:

$$
\begin{aligned}
\|B\| & \geqslant\left\|B\left(h \otimes e_{p}\right)\right\|=\left\|B_{0}\left(h \otimes e_{p}\right)+\sum_{k} B_{k} \chi_{p_{k}}\left(h \otimes e_{p}\right)\right\| \\
& =\left\|h_{0} \otimes e_{p}+\sum_{k_{i}} h_{k_{i}} \otimes e_{p_{k_{i}} * p}\right\| \geqslant\left\|B_{0}\left(h \otimes e_{p}\right)\right\| \geqslant\left\|B_{0}\right\|-\varepsilon
\end{aligned}
$$

The validity of the above-mentioned inequalities follows from the inclusion $\left\{p_{k_{i}}\right\} \subseteq\left\{p_{k}\right\}$ which guarantees the condition $p_{k_{i}} * p \neq p$. Since ε is arbitrary we get the required estimate

$$
\|\Phi(B)\|=\left\|B_{0}\right\| \leqslant\|B\| .
$$

Secondly, we take elements

$$
B \in \bigoplus_{p \in G_{a}} \mathfrak{A}_{a, p}, \quad A, C \in \mathfrak{A}_{a, e}
$$

Then we have the equalities

$$
\begin{aligned}
\Phi(A B C) & =\Phi\left(A B_{0} C+\sum_{k} A B_{k} \chi_{p_{k}} C\right) \\
& =\Phi\left(B_{0}^{\prime}+\sum_{k} A B_{k} C^{\prime} \chi_{p_{k}}\right)=B_{0}^{\prime}=A B_{0} C=A \Phi(B) C
\end{aligned}
$$

Theorem 5. The C^{*}-algebra \mathfrak{A}_{a} is $\pi_{1}(K)$-graded, that is, the following representation holds:

$$
\mathfrak{A}_{a}=\bigoplus_{p \in G_{a} \cong \pi_{1}(K)} \mathfrak{A}_{a, p}
$$

Proof. It is obvious that $\mathfrak{A}_{a, p} \cap \mathfrak{A}_{a, q}=0$ for $p \neq q$.
Let us show that the equality $\mathfrak{A}_{a, e} \chi_{p}=\chi_{p} \mathfrak{A}_{a, e}$ holds. Indeed, we take an element $P \otimes I_{a} \in \mathfrak{A}_{a, e}$. Using assertion (2) in Lemma 4 together with the commutativity of the algebra $\mathfrak{A}_{a, e}$, we obtain the following equalities:

$$
\left(P \otimes I_{a}\right) \chi_{p}=\left(P \otimes I_{a}\right) \chi_{p} \chi_{p}^{*} \chi_{p}=\chi_{p} \chi_{p}^{*}\left(P \otimes I_{a}\right) \chi_{p}=\chi_{p}\left(Q \otimes I_{a}\right)
$$

where

$$
Q \otimes I_{a}=\chi_{p}^{*}\left(P \otimes I_{a}\right) \chi_{p} \in \mathfrak{A}_{a, e}
$$

This yields the desired equality.
By Lemma 6, for every $p, q \in G_{a}$ we obtain

$$
\mathfrak{A}_{a, p} \mathfrak{A}_{a, q} \subseteq \mathfrak{A}_{a, e} \chi_{p} \mathfrak{A}_{a, e} \chi_{q}=\mathfrak{A}_{a, e} \chi_{p} \chi_{q} \subseteq \mathfrak{A}_{a, p * q}
$$

Further, for $P \otimes I_{a} \in \mathfrak{A}_{a, e}$ we have the equalities

$$
\left(\left(P \otimes I_{a}\right) \chi_{p}\right)^{*}=\chi_{p}^{*}\left(P \otimes I_{a}\right)=\chi_{p^{-1}}\left(P \otimes I_{a}\right)=\left(Q \otimes I_{a}\right) \chi_{p^{-1}}
$$

This means that the property $\left(\mathfrak{A}_{a, p}\right)^{*}=\mathfrak{A}_{a, p^{-1}}$ is fulfilled.
Finally, Lemma 7 implies that there is no an element in the space $\mathfrak{A}_{a, p}$ that can be approximated by linear combinations of elements from the family $\left\{\mathfrak{A}_{a, q}\right\}_{q \in G_{a} \backslash\{p\}}$.

$\S 5$. Corona for a net of C^{*}-algebras

The results of the preceding paragraph imply the existence of the family of the graded C^{*}-algebras $\left\{\mathfrak{A}_{a}\right\}_{a \in K}$ over the set K.

For elements $a \leqslant b \in K$ we define the mapping $\alpha_{b a}: \mathfrak{A}_{a} \rightarrow \mathfrak{A}_{b}$ as follows. Taking an element $\chi_{\bar{p}} \in \bar{G}_{a}$, we set

$$
\alpha_{b a}\left(\chi_{\bar{p}}\right)=\chi_{a}^{b} \chi_{\bar{p}} \chi_{a}^{b *}=\chi_{\overline{(b, a)} * \bar{p} *(a, b)}
$$

If we have the equivalence $\bar{p} \sim i_{a}$ then we get the equivalence $\overline{(b, a)} * \bar{p} *(a, b) \sim i_{b}$ and the inclusion $\alpha_{b a}\left(\mathfrak{A}_{a, e}\right) \subseteq \mathfrak{A}_{b, e}$. Let $p \in G_{a}$. Then one has the equalities

$$
\alpha_{b a}\left(\chi_{p}\right)=\chi_{a}^{b}\left(\bigvee_{\bar{p} \in p} \chi_{\bar{p}}\right) \chi_{a}^{b *}=\bigvee_{\bar{p} \in p} \chi_{\overline{(b, a)} * \bar{p} *(a, b)}
$$

Since the inclusion

$$
\{\overline{(b, a)} * \bar{p} *(a, b) \mid \bar{p} \in p\} \subseteq[\overline{(b, a)} * \bar{p} *(a, b)]=\sigma_{b a}(p)
$$

holds we conclude that

$$
\alpha_{b a}\left(\chi_{p}\right) \in \mathfrak{A}_{b, \sigma_{b a}(p)}
$$

where $\sigma_{b a}: G_{a} \rightarrow G_{b}$ is an isomorphism given by formula (5). Therefore we have the inclusion

$$
\alpha_{b a}\left(\mathfrak{A}_{a, p}\right) \subseteq \mathfrak{A}_{b, \sigma_{b a}(p)}
$$

Thus, the mapping $\alpha_{b a}: \mathfrak{A}_{a} \rightarrow \mathfrak{A}_{b}$ preserves the graduation of the algebras. Moreover, this mapping is an embedding. Really, using Lemma 1, for all $A, B \in$ \mathfrak{A}_{a} we obtain the equalities

$$
\alpha_{b a}(A B)=\chi_{a}^{b} A B \chi_{a}^{b *}=\chi_{a}^{b} A \chi_{a}^{b *} \chi_{a}^{b} B \chi_{a}^{b *}=\alpha_{b a}(A) \alpha_{b a}(B)
$$

Lemma 1 implies that the property for the above mappings

$$
\alpha_{c a}=\alpha_{c b} \circ \alpha_{b a}
$$

is fulfilled whenever $a \leqslant b \leqslant c \in K$.
This means that the family of the algebras $\left\{\mathfrak{A}_{a}\right\}_{a \in K}$ constitutes the net of C^{*}-algebras

$$
\left(K, \mathfrak{A}_{a}, \alpha_{b a}\right)_{a \leqslant b \in K}
$$

over the set K, where each mapping $\alpha_{b a}: \mathfrak{A}_{a} \rightarrow \mathfrak{A}_{b}$ is an embedding. This net satisfies the isotony property (see [2]). The algebras of the net will be called the local algebras. We note that if all the mappings $\gamma_{b a}: H_{a} \rightarrow H_{b}$ are isomorphisms for $a \leqslant b \in K$ then the mappings $\alpha_{b a}: \mathfrak{A}_{a} \rightarrow \mathfrak{A}_{b}$ are isomorphisms of algebras.

We represent the partially ordered set K as the union of all its maximal upward directed subsets:

$$
K=\bigcup_{i \in I} K_{i}
$$

Such a representation is unique. Further we consider the net

$$
\left(K_{i}, \mathfrak{A}_{a}, \alpha_{b a}\right)_{a \leqslant b \in K_{i}}
$$

over the upward directed set K_{i}. Since the mapping $\alpha_{b a}: \mathfrak{A}_{a} \hookrightarrow \mathfrak{A}_{b}$ is an embedding we may assume that the inclusion $\mathfrak{A}_{a} \subseteq \mathfrak{A}_{b}$ holds for $a \leqslant b$. We denote by

$$
\mathfrak{A}_{i}=\overline{\bigcup_{a \in K_{i}} \mathfrak{A}_{a}}
$$

the inductive limit of the system of the C^{*}-algebras $\left\{\mathfrak{A}_{a}\right\}_{a \in K_{i}}$ over the directed set K_{i}, that is, the completion with respect to the unique C^{*}-norm on $\bigcup_{a \in K_{i}} \mathfrak{A}_{a}$. The algebra \mathfrak{A}_{i} is called a quasi-local algebra.

We call the family of the limit algebras $\left\{\mathfrak{A}_{i}\right\}_{i \in I}$ the corona for the net of C^{*}-algebras $\left(K, \mathfrak{A}_{a}, \alpha_{b a}\right)_{a \leqslant b \in K}$.

Theorem 6. In the corona for every $i \in I$ the algebra \mathfrak{A}_{i} is a $\pi_{1}(K)$-graded C^{*}-algebra, that is, the following representation holds:

$$
\mathfrak{A}_{i}=\overline{\bigoplus_{p \in \pi_{1}(K)} \mathfrak{A}_{i, p}}
$$

Proof. It follows from the fact that the embedding $\alpha_{b a}: \mathfrak{A}_{a} \rightarrow \mathfrak{A}_{b}$ preserves the graduation of the algebras. We have the representations

$$
\mathfrak{A}_{i, e}=\overline{\bigcup_{a \in K_{i}} \mathfrak{A}_{a, e}} \quad \text { and } \quad \mathfrak{A}_{i, p}=\overline{\bigcup_{a \in K_{i}} \mathfrak{A}_{a, p}}, \quad p \in \pi_{1}(K) .
$$

Assume we are given two nets

$$
\left(K, H_{a}^{K}, \gamma_{b a}\right)_{a \leqslant b \in K} \quad \text { and } \quad\left(L, H_{x}^{L}, \gamma_{y x}\right)_{x \leqslant y \in L}
$$

over partially ordered sets K and L, respectively, where H_{a}^{K} and H_{x}^{L} are Hilbert spaces and $\gamma_{b a}: H_{a}^{K} \rightarrow H_{b}^{K}$ as well as $\gamma_{y x}: H_{x}^{L} \rightarrow H_{y}^{L}$ are isometric embeddings for all $a \leqslant b$ and $x \leqslant y$.

A pair

$$
(\varphi, \Phi):\left(K, H_{a}^{K}, \gamma_{b a}\right)_{a \leqslant b \in K} \rightarrow\left(L, H_{x}^{L}, \gamma_{y x}\right)_{x \leqslant y \in L}
$$

is called a morphism for nets of Hilbert spaces if the following properties are fulfilled:

1) $\varphi: K \rightarrow L$ is a morphism of partially ordered sets, i.e., the condition $a \leqslant b$ implies $\varphi(a) \leqslant \varphi(b)$;
2) the mapping

$$
\Phi: \bigoplus_{a \in K} H_{a}^{K} \rightarrow \bigoplus_{x \in L} H_{x}^{L}
$$

as well as the mappings

$$
\Phi_{a}=\left.\Phi\right|_{H_{a}^{K}}: H_{a}^{K} \hookrightarrow H_{\varphi(a)}^{L}
$$

for all $a \in K$ are isometric embeddings;
3) the equality

$$
\Phi_{b} \circ \gamma_{b a}=\gamma_{\varphi(b) \varphi(a)} \circ \Phi_{a}
$$

holds whenever $a \leqslant b$.
Similarly, a pair

$$
(\varphi, \Phi):\left(K, \mathfrak{A}_{a}^{K}, \alpha_{b a}\right)_{a \leqslant b \in K} \rightarrow\left(L, \mathfrak{A}_{x}^{L}, \alpha_{y x}\right)_{x \leqslant y \in L}
$$

is a morphism for nets of C^{*}-algebras if

$$
\Phi=\left\{\Phi_{a}\right\}_{a \in K}
$$

where $\Phi_{a}: \mathfrak{A}_{a}^{K} \rightarrow \mathfrak{A}_{\varphi(a)}^{L}$ is a $*$-homomorphism of C^{*}-algebras for every $a \in K$, and the equality

$$
\Phi_{b} \circ \alpha_{b a}=\alpha_{\varphi(b) \varphi(a)} \circ \Phi_{a}
$$

holds whenever $a \leqslant b$. A morphism is said to be faithful if Φ_{a} is an embedding for every $a \in K$.

Let $\left\{\mathfrak{A}_{i}^{K}\right\}_{i \in I}$ and $\left\{\mathfrak{A}_{j}^{L}\right\}_{j \in J}$ be the coronas for the nets of C^{*}-algebras $\left(K, \mathfrak{A}_{a}^{K}, \alpha_{b a}\right)_{a \leqslant b \in F}$
and $\left(L, \mathfrak{A}_{x}^{L}, \alpha_{y x}\right)_{x \leqslant y \in L}$, respectively. A morphism of coronas is a family of mappings $\Phi^{*}=\left\{\Phi_{i}^{*}\right\}_{i \in I}$ such that for every index $i \in I$ there exists an index $j \in J$ for which $\Phi_{i}^{*}: \mathfrak{A}_{i}^{K} \rightarrow \mathfrak{A}_{j}^{L}$ is a $*$-homomorphism of C^{*}-algebras.

A morphism $\varphi: K \rightarrow L$ induces the morphism $\bar{S}^{K} \rightarrow \bar{S}^{L}$, which is denoted by the same letter, as follows: if \bar{p} is a sequence of elementary paths of the
forms (a, b) and $\overline{(b, a)}$ on K then we set that $\varphi(\bar{p})$ is a similar sequence of elementary paths of the forms $(\varphi(a), \varphi(b))$ and $\overline{(\varphi(b), \varphi(a))}$ on L.

We notice that if $\bar{p}_{1} \sim \bar{p}_{2}$ then $\varphi\left(\bar{p}_{1}\right) \sim \varphi\left(\bar{p}_{2}\right)$. Therefore, the morphism φ induces the homomorphisms of the groupoids

$$
\varphi^{*}: \bar{S}^{K} / \sim \rightarrow \bar{S}^{L} / \sim
$$

and groups

$$
\varphi^{*}: G_{a}^{K} \rightarrow G_{\varphi(a)}^{L}
$$

defined by $\varphi^{*}([\bar{p}])=[\varphi(\bar{p})]$. Consequently, one gets the homomorphism of the first homotopy groups

$$
\varphi^{*}: \pi_{1}(K) \rightarrow \pi_{1}(L)
$$

Theorem 7. Let $\varphi^{*}: \pi_{1}(K) \rightarrow \pi_{1}(L)$ be an injective morphism of the first homotopy groups and $\Phi_{a}: H_{a}^{K} \rightarrow H_{\varphi(a)}^{L}$ be an isometric isomorphism for every $a \in K$. Then the morphism for the nets of Hilbert spaces

$$
(\varphi, \Phi):\left(K, H_{a}^{K}, \gamma_{b a}\right)_{a \leqslant b \in K} \rightarrow\left(L, H_{x}^{L}, \gamma_{y x}\right)_{x \leqslant y \in L}
$$

induces the faithful morphism for nets of C^{*}-algebras

$$
\left(\varphi, \Phi^{*}\right):\left(K, \mathfrak{A}_{a}^{K}, \alpha_{b a}\right)_{a \leqslant b \in K} \rightarrow\left(L, \mathfrak{A}_{x}^{L}, \alpha_{y x}\right)_{x \leqslant y \in L}
$$

Proof. Let us consider the direct sums of Hilbert spaces

$$
\mathcal{H}^{K}=\bigoplus_{a \in K} H_{a}^{K} \otimes l^{2}\left(S_{a}^{K}\right)
$$

and

$$
\mathcal{H}^{L}=\bigoplus_{x \in L} H_{x}^{L} \otimes l^{2}\left(S_{x}^{L}\right)
$$

We define the mapping $\Phi \otimes \widehat{\varphi}: \mathcal{H}^{K} \rightarrow \mathcal{H}^{L}$ by setting

$$
(\Phi \otimes \widehat{\varphi})\left(h \otimes e_{p}\right)=\Phi(h) \otimes e_{\varphi^{*}(p)}
$$

for every $h \otimes e_{p} \in \mathcal{H}^{K}$. It is clear that the mapping

$$
\Phi \otimes \hat{\varphi}=\bigoplus_{a \in K} \Phi_{a} \otimes \widehat{\varphi}
$$

is an isometric embedding and one has the inclusion

$$
\left(\Phi_{a} \otimes \widehat{\varphi}\right)\left(H_{a}^{K} \otimes l^{2}\left(S_{a}^{K}\right)\right) \subseteq H_{\varphi(a)}^{L} \otimes l^{2}\left(S_{\varphi(a)}^{L}\right)
$$

We claim that for every $\bar{p} \in \bar{S}$ the equality

$$
\widehat{\varphi} \circ T_{\bar{p}}=T_{\varphi(\bar{p})} \circ \widehat{\varphi}
$$

holds, where $T_{\bar{p}} e_{q}=e_{[\bar{p} * \bar{q}]}$. Indeed, we have the equalities

$$
\widehat{\varphi} T_{\bar{p}} e_{q}=\widehat{\varphi} e_{[\bar{p} * \bar{q}]}=e_{[\varphi(\bar{p}) * \varphi(\bar{q})]}=T_{\varphi(\bar{p})} e_{\varphi^{*}(q)}=T_{\varphi(\bar{p})} \widehat{\varphi} e_{q},
$$

as claimed.
Let us show the validity of the equality

$$
\begin{equation*}
\left(\Phi_{b} \otimes \widehat{\varphi}\right) \circ \chi_{a}^{b}=\chi_{\varphi(a)}^{\varphi(b)} \circ\left(\Phi_{a} \otimes \widehat{\varphi}\right) \tag{7}
\end{equation*}
$$

To this end, we write the operator χ_{a}^{b} in the form $\chi_{a}^{b}=\gamma_{b a} \otimes T_{\overline{(b, a)}}$. Then we have the chain of the following equalities:

$$
\begin{aligned}
\left(\Phi_{b} \otimes \widehat{\varphi}\right) \chi_{a}^{b} & =\left(\Phi_{b} \otimes \widehat{\varphi}\right)\left(\gamma_{b a} \otimes T_{\overline{(b, a)}}\right) \\
& =\Phi_{b} \gamma_{b a} \otimes \widehat{\varphi} T_{\overline{(b, a)}}=\gamma_{\varphi(b) \varphi(a)} \Phi_{a} \otimes T_{\overline{(\varphi(b), \varphi(a))}} \widehat{\varphi} \\
& =\left(\gamma_{\varphi(b) \varphi(a)} \otimes T_{\overline{(\varphi(b), \varphi(a))}}\right)\left(\Phi_{a} \otimes \widehat{\varphi}\right)=\chi_{\varphi(a)}^{\varphi(b)}\left(\Phi_{a} \otimes \widehat{\varphi}\right)
\end{aligned}
$$

Since all mappings Φ_{a} are isometric isomorphisms we obtain the equality $\Phi_{\partial_{1} \bar{p}}\left(H_{\bar{p}}\right)=H_{\varphi(\bar{p})}$ for $\bar{p} \in \bar{S}$. Hence, it follows from (7) that

$$
\left(\Phi_{a} \otimes \widehat{\varphi}\right) \circ \chi_{a}^{b *}=\chi_{\varphi(a)}^{\varphi(b) *} \circ\left(\Phi_{b} \otimes \widehat{\varphi}\right)
$$

Therefore, for each \bar{p} one has the equality

$$
\left(\Phi_{\partial_{0} \bar{p}} \otimes \widehat{\varphi}\right) \circ \chi_{\bar{p}}=\chi_{\varphi(\bar{p})} \circ\left(\Phi_{\partial_{1} \bar{p}} \otimes \widehat{\varphi}\right)
$$

We put $\Phi_{a}^{*}\left(\chi_{\bar{p}}\right)=\chi_{\varphi(\bar{p})}$ for every $\bar{p} \in \bar{G}_{a}$. If the equivalence $\bar{p} \sim i_{a}$ holds then we have the equivalence $\varphi(\bar{p}) \sim i_{\varphi(a)}$ as well. This means that if the cycle $\chi_{\bar{p}}$ is trivial in the algebra \mathfrak{A}_{a}^{K} then the cycle $\chi_{\varphi(\bar{p})}$ is also trivial in the algebra $\mathfrak{A}_{\varphi(a)}^{L}$. Since Φ_{a} is an isomorphism and each trivial cycle has the form $\chi_{\bar{p}}=Q_{\bar{p}} \otimes I_{a}$ the mapping $\chi_{\bar{p}} \mapsto \chi_{\varphi(\bar{p})}$ defined on the set of generators can be extended to the embedding $\Phi_{a}^{*}: \mathfrak{A}_{a, e}^{K} \rightarrow \mathfrak{A}_{\varphi(a), e^{L}}^{L}$. Further, we extend the embedding Φ_{a}^{*} to the whole algebra \mathfrak{A}_{a}^{K} as follows: if

$$
\chi_{p}=\bigvee_{\bar{p} \in p} \chi_{\bar{p}}
$$

then we set

$$
\Phi_{a}^{*}\left(\chi_{p}\right)=\bigvee_{\bar{p} \in p} \Phi_{a}^{*}\left(\chi_{\bar{p}}\right)=\bigvee_{\bar{p} \in p} \chi_{\varphi(\bar{p})}
$$

Since the condition

$$
\{\varphi(\bar{p}) \mid \bar{p} \in p\} \subseteq[\varphi(\bar{p})]=\varphi^{*}(p)
$$

holds we get

$$
\Phi_{a}^{*}\left(\chi_{p}\right) \in \mathfrak{A}_{\varphi(a), \varphi^{*}(p)}^{L}
$$

Thus, one has the inclusion $\Phi_{a}^{*}\left(\mathfrak{A}_{a, p}^{K}\right) \subseteq \mathfrak{A}_{\varphi(a), \varphi^{*}(p)}^{L}$. Moreover, because φ^{*} is an embedding we obtain the embedding

$$
\Phi_{a}^{*}: \mathfrak{A}_{a}^{K}=\overline{\bigoplus_{p \in \pi_{1}(K)} \mathfrak{A}_{a, p}^{K}} \rightarrow \mathfrak{A}_{\varphi(a)}^{L}=\overline{\bigoplus_{g \in \pi_{1}(L)} \mathfrak{A}_{\varphi(a), g}^{L}}
$$

that preserves the graduation.
It remains to check the equality

$$
\Phi_{b}^{*} \circ \alpha_{b a}=\alpha_{\varphi(b) \varphi(a)} \circ \Phi_{a}^{*}
$$

for every $a \leqslant b \in K$. To do this, we check its validity for the generators. Indeed, for $\bar{p} \in \bar{G}_{a}$ we have

$$
\Phi_{b}^{*} \alpha_{b a}\left(\chi_{\bar{p}}\right)=\Phi_{b}^{*}\left(\chi_{a}^{b} \chi_{\bar{p}} \chi_{a}^{b *}\right)=\chi_{\varphi(a)}^{\varphi(b)} \chi_{\varphi(\bar{p})} \chi_{\varphi(a)}^{\varphi(b) *}=\alpha_{\varphi(b) \varphi(a)} \Phi_{a}^{*}\left(\chi_{\bar{p}}\right)
$$

This completes the proof of the theorem.
Corollary 4. Let $\left\{\mathfrak{A}_{i}^{K}\right\}_{i \in I}$ and $\left\{\mathfrak{A}_{j}^{L}\right\}_{j \in J}$ be the coronas for nets

$$
\left(K, \mathfrak{A}_{a}^{K}, \alpha_{b a}\right)_{a \leqslant b \in K} \quad \text { and } \quad\left(L, \mathfrak{A}_{x}^{L}, \alpha_{y x}\right)_{x \leqslant y \in L}
$$

respectively. Then a morphism for nets of C^{*}-algebras

$$
\left(\varphi, \Phi^{*}\right):\left(K, \mathfrak{A}_{a}^{K}, \alpha_{b a}\right)_{a \leqslant b \in K} \rightarrow\left(L, \mathfrak{A}_{x}^{L}, \alpha_{y x}\right)_{x \leqslant y \in L}
$$

is extended to a morphism of coronas $\Phi^{*}=\left\{\Phi_{i}^{*}\right\}_{i \in I}$ so that for every $i \in I$ there exists an index $j \in J$ such that

$$
\Phi_{i}^{*}\left(\mathfrak{A}_{i}^{K}\right) \subseteq \mathfrak{A}_{j}^{L}
$$

Proof. Let us consider the inductive limit

$$
\mathfrak{A}_{i}^{K}=\overline{\bigcup_{a \in K_{i}} \mathfrak{A}_{a}^{K}}
$$

We put

$$
\Phi_{i}^{*}\left(\mathfrak{A}_{i}^{K}\right)=\overline{\bigcup_{a \in K_{i}} \Phi_{a}^{*}\left(\mathfrak{A}_{a}^{K}\right)} \subseteq \overline{\bigcup_{a \in K_{i}} \mathfrak{A}_{\varphi(a)}^{L}}
$$

Since the inclusion $\varphi\left(K_{i}\right) \subseteq L_{j}$ holds for some index $j \in J$ we have $\Phi_{i}^{*}\left(\mathfrak{A}_{i}^{K}\right) \subseteq$ \mathfrak{A}_{j}^{L}, as required.

The following example demonstrates that if φ^{*} is not an embedding then a morphism for nets of C^{*}-algebras is not faithful, in general.

Example. Let Y be the open unit disk in the complex plane with the center at the coordinate origin and $X=Y \backslash\{(0,0)\}$. Let K and L be the families of all open simply connected subsets of the sets X and Y, respectively. The families K and L are partially ordered sets under the inclusion relation. Moreover,
the set L is upward directed. It is easy to see that the equalities $\pi_{1}(K)=\mathbb{Z}$ and $\pi_{1}(L)=\{0\}$ hold. The inclusion $X \subseteq Y$ yields the embedding $\varphi: K \rightarrow$ L. Therefore, we have the homomorphism of the first homotopy groups φ^{*} : $\pi_{1}(K) \rightarrow \pi_{1}(L)$ such that $\varphi^{*}(n)=0$ for each $n \in \mathbb{Z}$.

Further, let H be a Hilbert space. We consider the bundles of Hilbert spaces $\left(K, H_{a}, \gamma_{b a}\right)_{a \leqslant b \in K}$ and $\left(L, H_{x}, \gamma_{y x}\right)_{x \leqslant y \in L}$ over K and L, respectively (see [6]), where $H_{a}=H_{x}=H$ and $\gamma_{b a}, \gamma_{y x}$ are the identity mappings. Then one associates to them the bundles of C^{*}-algebras $\left(K, \mathfrak{A}_{a}^{K}, \alpha_{b a}\right)_{a \leqslant b \in K}$ and $\left(L, \mathfrak{A}_{x}^{L}, \alpha_{y x}\right)_{x \leqslant y \in L}$ over K and L, respectively, where $\alpha_{b a}$ as well as $\alpha_{y x}$ are isomorphisms. The C^{*}-algebra \mathfrak{A}_{a}^{K} is \mathbb{Z}-graded. It is generated by the operators $\chi_{n}=I \otimes T_{0}^{n}, n \in \pi_{1}(K)$. Here $I \otimes T_{0}$ is the unitary two-sided shift operator on the space $H \otimes l^{2}\left(S_{a}^{K}\right)$, which corresponds to $n=1 \in \pi_{1}(K)$. Therefore, we have the isomorphism $\mathfrak{A}_{a}^{K} \cong C\left(S^{1}\right)$, where $C\left(S^{1}\right)$ is the Banach algebra of all continuous complex-valued functions on the unit circle in the complex plane. The C^{*}-algebra \mathfrak{A}_{x}^{L} is generated by the operator $\chi_{\varphi^{*}(n)}=I \otimes I_{a}$. Hence, one has the isomorphism $\mathfrak{A}_{x}^{L} \cong \mathbb{C}$. The mapping $\Phi_{a}^{*}: \mathfrak{A}_{a}^{K} \rightarrow \mathfrak{A}_{\varphi(a)}^{L}$ defined by the correspondence $\chi_{n} \mapsto \chi_{\varphi^{*}(n)}$ yields the following commutative diagram:

where $m: C\left(S^{1}\right) \rightarrow \mathbb{C}$ is the multiplicative functional given by

$$
m(f)=f(1)
$$

Obviously, the mapping m is not an embedding.

References

[1] Haag R., Kastler D., An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964), 848-861.
[2] Haag R., Local quantum physics. Fields, particles, algebras, Texts Monogr. Phys., Springer-Verlag, Berlin, 1992.
[3] Horuzhy S.S., Introduction to algebraic quantum field theory, Nauka, M., 1986 [in Russian]. Translation: Horuzhy S.S., Introduction to algebraic quantum field theory, Mathematics and its Applications (Soviet Series), Kluwer, Dordrecht, (1990).
[4] Ruzzi G., Homotopy of posets, net cohomology and superselection sectors in globally hyperbolic space-times, Rev. Math. Phys. 17 (2005), no. 9, 1021-1070.
[5] Vasselli E., Presheaves of symmetric tensor categories and nets of C^{*}-algebras, J. Noncommut. Geom. 9 (2015), no. 1, 121-159.
[6] Ruzzi G., Vasselli E., A new light on nets of C^{*}-algebras and their representations, Comm. Math. Phys. 312 (2012), no. 3, 655-694.
[7] Grigoryan S. A., Salakhutdinov A. F. C^{*}-algebras generated by cancellative semigroups, Sib. Math. J. 51 (1), 12-19 (2010).
[8] Aukhadiev M. A., Grigoryan S. A., Lipacheva E. V., Operator approach to quantization of semigroups, $\quad \mathrm{Sb}$. Math. 205 (3), 319-342 (2014).
[9] Lipacheva E. V., Hovsepyan K. H., The structure of C^{*}-subalgebras of the Toeplitz algebra fixed with respect to a finite group of automorphisms Russian Math. (Iz. VUZ) 59 (6), 10-17 (2015).
[10] Lipacheva E.V., Hovsepyan K.H. The structure of invariant ideals of some subalebras of Toeplitz algebra, J. Contenporary Math. Analysis, 50 (2), 70-79 (2015).
[11] Lipacheva E. V., Hovsepyan K. H., Automorphisms of some subalgebras of the Toeplitz algebra, Sib. Math. J. 57 (3), 525-531 (2016).
[12] Grigoryan S. A., Lipacheva E. V., On the structure of C^{*}-algebras generated by representations of an elementary inverse semigroup, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, No4, 180-193 (2016) [in Russian].
[13] Grigoryan S., Grigoryan T., Lipacheva E., Sitdikov A., C*-algebra generated by the path semigroup, Lobachevskii J. Math. 37 (2016), no. 6, 740-748.
[14] Exel R., Partial dynamical systems, Fell bundles and applications, Math. Surv. Monogr., vol. 224, Amer. Math. Soc., Providence, RI, 2017.

Kazan State Power
Поступило 1 декабря 2017 г.
Engineering University,
Krasnoselskaya st., 51
420066, Kazan, Russia
E-mail: gsuren@inbox.ru
E-mail: elipacheva@gmail.com
E-mail: airat_vm@rambler.ru

[^0]: Ключевые слова: C^{*}-algebra, graded C^{*}-algebra, partially ordered set, net of C^{*} algebras, net of Hilbert spaces, path semigroup, the first homotopy group, inductive limit.

