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1. INTRODUCTION
In the algebraic approach to the quantum field theory [1] (the algebraic quantum field theory) the

physical content of the theory is encoding by a collection of C∗-algebras of observables A = {Ao}o∈K

indexed by elements of a partially ordered set K (poset) [2]. The poset K is a non-empty set with a binary
relation ≤ which is reflexive, antisymmetric and transitive. A net of C∗-algebras over the poset K is the
pair (A, γ)K , where γ = {γo′o : Ao → Ao′}o≤o′ are *-morphisms fulfilling the net relations

γo′′o = γo′′o′ ◦ γo′o

for all o ≤ o′ ≤ o′′ ∈ K. If we consider the poset K as a category in which objects are elements of K
and morphisms are arrows (o, o′) for all o ≤ o′ ∈ K, then the net of C∗-algebras represents a covariant
functor from a poset K to category of unital C∗-algebras with *-morphisms (see for example [3, 4]).
More precisely we have a net of C∗-algebras for an upward directed poset and in the event of non-upward
directed we obtain a precosheaf of C∗-algebras [5–7].

In this paper we give an algebraic notion of a path on a poset K which turns out to be relevant
to the point of view on a path as a sequence of 1-simplices. We introduce the paths semigroup S on
the given poset K and construct a new C∗-algebra C∗

red(S) generated by the representation of S. We
consider both an upward directed set K and non-upward directed. The present paper is addressed
to detailed study of the paths semigroup S and the C∗-algebra C∗

red(S). We construct the net of
isomorphic C∗-algebras {Aa, γba, a ≤ b}a,b∈K over the poset K, where Aa are restrictions of the algebra
C∗

red(S) on Hilbert subspaces and γba : Aa → Ab are *-isomorphisms, such that γcb ◦ γba = γca for
all a ≤ b ≤ c ∈ K. In the last section we consider extensions C∗

red,n(S) and C∗
red,∞(S) of the algebra

C∗
red(S). We prove that C∗

red(S) is an ideal in C∗
red,n(S) and also in C∗

red,∞(S). We show that quotient
algebras C∗

red,n(S)/C∗
red(S) and C∗

red,∞(S)/C∗
red(S) are isomorphic to the Cuntz algebra.

Several works in recent years have addressed the C∗-algebras generated by the left regular represen-
tations of a semigroups with reduction [8] and by the representations of an inverse semigroup [9–11].
In the paper [12] have shown that the Cuntz algebra can be represented as a C∗-crossed product by
endomorphisms of the CAR algebra.
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2. PATHS SEMIGROUP

In this section we define the paths semigroup S on a partially ordered set K. The semigroup S is an
inverse semigroup and has subgroups Ga corresponding to loops which start and end at the same point
a ∈ K.

Let K be a partially ordered set with binary relation ≤ satisfying reflexivity, antisymmetry and
transitivity conditions. We call the set K a poset. Elements a and b are called comparable on K if
a ≤ b or b ≤ a. We say that the poset K is upward directed if for every pair a, b ∈ K there exists c ∈ K,
such that a ≤ c and b ≤ c.

We call an ordered pair of comparable elements a and b on K an elementary path. We denote it by
(b, a) if b ≤ a and by (b, a) if b ≥ a and say that a is a starting point of p, and b is an ending point. We
use the denotation ∂1p = a to denote the starting point of p and ∂0p = b to denote the ending point. For
an elementary path p = (b, a) we define the inverse path p−1 = (a, b). For p = (b, a) the inverse path is
p−1 = (a, b). Obviously, (p−1)−1 = p. Finally we call the pair (a, a) = (a, a) = ia a trivial path.

Let p1, . . . , pn be elementary paths, such that ∂0pi−1 = ∂1pi for i = 2, . . . , n. We define a path p as
the sequence

p = pn ∗ pn−1 ∗ . . . ∗ p1.

The starting point of p is ∂1p = ∂1p1 and the ending point is ∂0p = ∂0pn. For every path p = pn ∗ pn−1 ∗
. . . ∗ p1 the inverse path is

p−1 = p−1
1 ∗ p−1

2 ∗ . . . ∗ p−1
n

with ∂1p
−1 = ∂0p and ∂0p

−1 = ∂1p. Let us consider a set of all paths on K. We define a semigroup
structure on this set by extending the operation "∗" to multiplication as

p ∗ q =

{
p ∗ q if ∂1p = ∂0q,

0 otherwise

for all paths p and q.
The poset K is called connected if for all a, b ∈ K there exists a path p, such that ∂0p = a, ∂1p = b.

Throughout the rest of this article we assume K be a connected set.
We call the set of all paths on K a paths semigroup S if for all a, b, c ∈ K, such that a ≤ b ≤ c, the

following axioms hold:
1. (a, b) ∗ (b, c) = (a, c);
2. (c, b) ∗ (b, a) = (c, a);
3. (b, a) ∗ (a, b) = ib, (a, b) ∗ (b, a) = ia;
4. (a, b) ∗ ib = (a, b), ia ∗ (a, b) = (a, b);
5. (b, a) ∗ ia = (b, a), ib ∗ (b, a) = (b, a);
6. ia ∗ ia = ia.
It is easy to see that paths semigroup S has the following useful properties:
1) for every p ∈ S, such that ∂0p = a, ∂1p = b,

p−1 ∗ p = ib, p ∗ p−1 = ia;

2) for every p ∈ S, such that ∂0p = a, ∂1p = b,

ia ∗ p = p ∗ ib = p;

3) for all p, q ∈ S, such that ∂0q = ∂1p,

(p ∗ q)−1 = q−1 ∗ p−1;

4) for all p, q, s ∈ S if p ∗ q = p ∗ s �= 0 or q ∗ p = s ∗ p �= 0 then q = s; so the paths semigroup S is a
semigroup with a reduction.

Thus, we can write elements of S as follows:

p = (a2n, a2n−1) ∗ . . . ∗ (a3, a2) ∗ (a2, a1) ∗ (a1, a0). (1)
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Here elementary paths of type (a, b) and (a, b) alternate with each other. Note that there exists a variety
of representations of type (1) for a path p. Our definition of the path turns out to be in full accordance
with the definition given in [4]. The multiplication (ai+1, ai) ∗ (ai, ai−1) is 1-simplex with support ai

where elements ai−1, ai, ai+1 are 0-simplices (see definitions of 0-simplex and 1-simplex in [2–4]).
A three elements a, c, x ∈ K, such that a, c ≤ x, form 1-simplex denoted by

[axc] = (a, x) ∗ (x, c)

with support x. An inverse 1-simplex is

[cxa] = (c, x) ∗ (x, a)

with the same support. In general 1-simplex depends on the support. But for example if x, y ∈ K are
comparable elements then

[axc] = [ayc]. (2)

Indeed for x ≤ y we observe

[ayc] = (a, y) ∗ (y, c) = (a, x) ∗ (x, y) ∗ (y, x) ∗ (x, c) = (a, x) ∗ ix ∗ (x, c) = [axc].

In Lemma 4 we show that 1-simplex does not depend from the support if the poset is upward directed.
Therefore, one can rewrite the path (1) as a sequence of 1-simplices:

p = [a2n
a2n−1a2n−2] ∗ . . . ∗ [a2

a1a0].

Let us recall the definition of an inverse semigroup (for details see [13–15]). Let S be a semigroup.
Elements a, b ∈ S are called mutual inverses if

a = aba, b = bab.

The semigroup S is called an inverse semigroup if for every a ∈ S there exists a unique inverse element
b ∈ S.

We use the following theorem in the proof of Lemma 1.
Theorem 1 ([15]). For a semigroup S in which every element has an inverse, uniqueness of

inverses is equivalent to the requirement that all idempotents in S commute.
Lemma 1. The paths semigroup S is an inverse semigroup.
Proof. Let p ∈ S be a path with a starting point ∂1p = a and an ending point ∂0p = b. For every p

there is an inverse path p−1, such that

p ∗ p−1 ∗ p = ib ∗ p = p, p−1 ∗ p ∗ p−1 = ia ∗ p−1 = p−1.

Hence, p and p−1 are mutual inverses elements. For every a ∈ K we have ia ∗ ia = ia and ia ∗ ib = 0
for all a �= b. Therefore the set {ia}a∈K forms a commutative subsemigroup of idempotents in the paths
semigroup S. Hence, by Theorem 1 the paths semigroup S is an inverse semigroup. �

Lemma 2. If for some 1-simplices [axb] and [byc] there exists z ∈ K, such that x, y ≤ z, then
[axb] ∗ [byc] = [azc].

Proof. We have

[axb] ∗ [byc] = (a, x) ∗ (x, b) ∗ (b, y) ∗ (y, c)

= (a, x) ∗ (x, z) ∗ (z, x) ∗ (x, b) ∗ (b, y) ∗ (y, z) ∗ (z, y) ∗ (y, c)

= (a, z) ∗ (z, b) ∗ (b, z) ∗ (z, c) = (a, z) ∗ (z, c) = [azc].

�

Corollary 1. If for some 1-simplices [axb], [byc] and [azc] there exists w ∈ K, such that x, y, z ≤
w, then [axb] ∗ [byc] = [azc].

Proof. Using the Lemma 2 and the equality (2) we have [axb] ∗ [byc] = [awc] = [azc]. �

In the works [3, 4] there exists the notion of an elementary deformation of a path. They say that a
path admits an elementary deformation if one can replace some section [axb] ∗ [byc] of the path with
[azc] and vice versa. It is possible in the conditions of the Corollary 1. If we can obtain a path q ∈ S from
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some path p ∈ S by a finite number of elementary deformations then according to the Lemma 2 and the
Corollary 1 we have the equality q = p.

We say that p ∈ S is a loop if ∂0p = ∂1p.
Let us denote by Ga the set of all loops that start and end in the point a.
Lemma 3. The following statements hold:
1) the set Ga is a subgroup in S with a unit ia;
2) each path p generates isomorphism between groups Ga and Gb if ∂0p = a, ∂1p = b;
3) if p, q ∈ S and ∂0p = ∂0q = a, ∂1p = ∂1q = b, then there exist g1 ∈ Ga and g2 ∈ Gb, such that

p = g1 ∗ q = q ∗ g2.
Proof. 1) The first statement is obvious.
2) Define a map γp : Ga → Gb in the following way:

γp(g) = p−1gp,

where g ∈ Ga. One can check that γp is an isomorphism.
3) It is easy to see that the statement holds for g1 = p ∗ q−1 ∈ Ga and g2 = q−1 ∗ p ∈ Gb. �

Lemma 4. If the poset K is an upward directed set then the following statements hold:
1) for all a, b, x, y ∈ K if a, b ≤ x and a, b ≤ y then

[axb] = (a, x) ∗ (x, b) = (a, y) ∗ (y, b) = [ayb];

for simplicity let us omit supports and denote 1-simplex by [a, b];
2) [a, b] ∗ [b, c] = [a, c] for all a, b, c ∈ K;
3) for every p ∈ S if ∂0p = a and ∂1p = b then p = [a, b];
4) if g ∈ Ga then g = ia and the group Ga is a trivial group.
Proof. 1) As the poset K is upward directed set then there exists z ∈ K, such that x, y ≤ z. Hence,

we have

[axb] = (a, x) ∗ (x, b) = (a, x) ∗ (x, z) ∗ (z, x) ∗ (x, b) = (a, z) ∗ (z, b)

= (a, y) ∗ (y, z) ∗ (z, y) ∗ (y, b) = (a, y) ∗ (y, b) = [ayb].

2) It follows from Lemma 2.
3) It follows from 2).
4) For every g ∈ Ga we have g = [a, an] ∗ . . . ∗ [a2, a1] ∗ [a1, a]. Using 2) several times, one gets

g = [a, a1] ∗ [a1, a] = [a, a] = (a, a) ∗ (a, a) = ia. �

3. C∗-ALGEBRA C∗
red(S)

In this section we define the C∗-algebra C∗
red(S) generated by the representation of the paths

semigroup S and obtain the net of isomorphic C∗-algebras (Aa, γba, a ≤ b)a,b∈K over the poset K, where
γba : Aa → Ab are *-isomorphisms satisfying the identity γcb ◦ γba = γca for a ≤ b ≤ c.

Let us consider a Hilbert space

l2(S) =

⎧⎨
⎩f : S → C

∣∣∣∣∣∣
∑
p∈S

|f(p)|2 < ∞

⎫⎬
⎭

with an inner product 〈f, g〉 =
∑

p∈S f(p)g(p). A family of functions {ep}p∈S is an ortonormal basis

of l2(S) where ep(p′) = δp,p′ is a Kronecker symbol. Let B(l2(S)) be the algebra of all linear bounded
operators acting on l2(S).

Define a representation π : S → B(l2(S)) by π(p) = Tp where

Tpeq =

{
ep∗q if ∂1p = ∂0q,

0 otherwise.
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Note that π is the left regular representation and coincides with the Vagner representation of an inverse
semigroup (see the definition of the Vagner representation in [14]).

We have 〈Tpeq, er〉 �= 0 if and only if p ∗ q = r or q = p−1 ∗ r. Hence,

〈Tpeq, er〉 =
〈
eq, Tp−1er

〉
.

Define the adjoint operator T ∗
p = Tp−1 . In Lemma 5 we show that operators Tp and T ∗

p are partial
isometric operators.

Given a ∈ K we define Sa = {p ∈ S|∂0p = a}. Thus l2(S) can be written as

l2(S) = ⊕
a∈K

l2(Sa).

Lemma 5. The following statements hold:
1) for every p ∈ S, such that ∂0p = a, ∂1p = b, the operator Tp is a mapping from l2(Sb) to l2(Sa)

and the operator T ∗
p is an inverse mapping from l2(Sa) to l2(Sb);

2) for every p ∈ S, such that ∂0p = a, ∂1p = b, operators Ia = TpT
∗
p and Ib = T ∗

p Tp are projectors
on l2(Sa) and l2(Sb) respectively;

3) for every g ∈ Ga the operator Tg is a unitary operator on l2(Sa);
4) for all p, q ∈ S, such that ∂0p = ∂0q = a, ∂1p = ∂1q = b, there exist g1 ∈ Ga and g2 ∈ Gb, such

that Tp = Tg1Tq = TqTg2 .
Proof. 1) We observe that Tpeq = ep∗q if ∂0q = b and Tpeq = 0 otherwise. Since ∂0(p ∗ q) = a then

Tp : l2(Sb) → l2(Sa). Similarly, T ∗
p : l2(Sa) → l2(Sb).

2) It is easy to see that Iaeq = TpT
∗
p eq = ep∗p−1∗q = eq if ∂0q = a and Iaeq = 0 otherwise. Therefore,

Ia is a projector on l2(Sa). Similarly, one can prove that Ib is a projector on l2(Sb).

3) We have Tg : l2(Sa) → l2(Sa) and TgT
∗
g ep = eg∗g−1∗p = ep, T

∗
g Tgep = ep for every p ∈ Sa. Hence,

Tg is a unitary operator.
4) This statement follows from the Lemma 3 (item 3). �

Let us denote by C∗
red(S) a uniformly closed subalgebra of B(l2(S)) generated by operators Tp for

every p ∈ S. Obviously the set of finite linear combinations of operators Tp, p ∈ S, is dense in т C∗
red(S).

Given a ∈ K we denote Sa = {p ∈ S|∂1p = a}. Thus we have again

l2(S) = ⊕
a∈K

l2(Sa).

Theorem 2. The following statements hold:
1) the algebra C∗

red(S) is irreducible on l2(Sa) for every a ∈ K;
2) C∗

red(S) = ⊕
a∈K

C∗
red(S)|l2(Sa) and every operator A ∈ C∗

red(S) can be represented as A =

⊕
a∈K

Aa where Aa = A|l2(Sa);

3) if the group Ga is non-trivial then C∗
red(S)|l2(Sa) doesn’t contain compact operators.

Proof. 1) The set {ep, ∂1p = a}p∈S is a basis of l2(Sa). For all p1, p2 ∈ Sa and p = p2 ∗ p−1
1 we have

Tpep1 = ep2 . It means that the algebra C∗
red(S) is irreducible on l2(Sa).

2) This statement follows from the fact that for every p ∈ S operator Tp maps the space l2(Sa) onto
itself for every a ∈ K.

3) Let p ∈ Sa, g ∈ Ga and g �= ia. Consider the sequence xn = ep∗gn where gn = g ∗ g ∗ . . . ∗ g︸ ︷︷ ︸
n

.

Since g ∗ g �= g elements of the sequence {xn} are pairwise orthogonal. If A ∈ C∗
red(S)|l2(Sa) is a

compact operator then ||Axn|| → 0 as n → ∞. On the other hand Aep =
∑

i αiepi where pi ∈ Sa and
αi are complex coefficients. Referral to the fact that A is approximated by finite linear combinations
of operators Tq, q ∈ S, and to the equality Tqep∗g = eq∗p∗g we obtain Aep∗g =

∑
i αiepi∗g. Similarly
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Aep∗gn =
∑

i αiepi∗gn for all n. Therefore, for every n we have ||Axn|| =
(∑

i |αi|2
)1/2

> 0. Hence, A

is not a compact operator. �

Theorem 3. Let K be an upward directed set. Then the following statements hold:

1) for every p ∈ S, such that ∂0p = a, ∂1p = b, we have Tp = T[a,b];

2) for every a ∈ K the algebra C∗
red(S)|l2(Sa) coincides with the algebra of all compact opera-

tors on B(l2(Sa));

3) the algebra C∗
red(S) is non-unital.

Proof. 1) This statement follows from the Lemma 4.

2) The set {e[c,a]}c∈K is a basis of l2(Sa). For every operator Tp we have Tpe[c,a] �= 0 if and
only if ∂1p = c. Hence, Tp = T[b,c] for some b and T[b,c]e[c,a] = e[b,a]. Therefore, Tp|l2(Sa) is a one
dimensional operator. So C∗-algebra C∗

red(S)|l2(Sa) coincides with the algebra of all compact operators
on B(l2(Sa)).

3) By the Theorem 2 for every element A ∈ C∗
red(S) we have A = ⊕

a∈K
Aa where Aa ∈ C∗

red(S)|l2(Sa).

If the algebra C∗
red(S) has the unit I then Ia = I|l2(Sa) is a compact operator in the infinite dimensional

Hilbert space. This is a contradiction. �

Given a ∈ K we denote Aa = C∗
red(S)|l2(Sa).

Theorem 4. There exists the set of *-isomorphisms {γba, a ≤ b}a,b∈K :

γba : Aa → Ab,

such that γcb ◦ γba = γca for all a, b, c ∈ K and a ≤ b ≤ c. And we obtain a net of isomorphic C∗-
algebras {Aa, γba, a ≤ b}a,b∈K over the poset K.

Proof. Define a unitary operator Uab : l2(Sa) → l2(Sb) for all a, b ∈ K, a ≤ b, by

Uabeq = eq∗(a,b)

for every q ∈ Sa. Then U∗
ab = Uba : l2(Sb) → l2(Sa) is the adjoint operator. Obviously, U∗

abUab =
id|l2(Sa) and UabU

∗
ab = id|l2(Sb). Let us define a mapping γba : Aa → Ab by

γba(A) = UabAU∗
ab

for every A ∈ Aa. One can check that γba is the *-isomorphism. It remains to check the equality
γcb ◦ γba = γca for a ≤ b ≤ c. We observe that

(γcb ◦ γba)(A) = γcb(γba(A)) = UbcUabAU∗
abU

∗
bc

for every A ∈ Aa. Otherwise

UbcUabeq = Ubceq∗(a,b) = eq∗(a,b)∗(b,c) = eq∗(a,c) = Uaceq

for every q ∈ Sa and similarly U∗
abU

∗
bcep = U∗

acep for every p ∈ Sc. So (γcb ◦ γba)(A) = γca(A) for every
A ∈ Aa. �

Remark . The set of isomorphisms {γba, a ≤ b}a,b∈K can be extended from elementary paths to
1-simplices {γ[bxa], a, b ≤ x}a,b,x∈K by γ[bxa] = γ−1

xb ◦ γxa, so that they satisfy 1-cocycle identity [4]:
γ[cyb] ◦ γ[bxa] = γ[cza] for [cyb] ∗ [bxa] = [cza]. Extending the set {γ[bxa], a, b ≤ x}a,b,x∈K to paths we
get the set of isomorphisms {γp}p∈S satisfying the equality γp2 ◦ γp1 = γp2∗p1 for all p1, p2 ∈ S and
∂0p1 = ∂1p2.
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4. EXTENSIONS OF THE C∗-ALGEBRA C∗
red(S)

In this section we consider the extensions of the algebra C∗
red(S), such that this algebra is an ideal in

that extensions and quotient algebras are isomorphic to the Cuntz algebra.
Let K be an upward directed countable set. By the lemma 4 for every path p ∈ S, such that

∂0p = a, ∂1p = b, we have p = [a, b]. Let us represent the set K as a finite union of countable disjoint
sets

K =
n⋃

i=1

Ei,

where Ei
⋂

Ej = ∅ for i �= j.
We define one-to-one mappings φi : Ei → K, i = 1, . . . , n, and operators Tφi

: l2(S) → l2(S) in the
following way:

Tφi
=

⊕
x∈Ei

T[x,φi(x)], i = 1, . . . , n.

An adjoint operator of the operator Tφi
is

T ∗
φi

=
⊕
x∈Ei

T ∗
[x,φi(x)] =

⊕
x∈Ei

T[φi(x),x] =
⊕
x∈K

T[x,φ−1
i (x)]

.
The following equalities hold:

T ∗
φi

Tφi
= id; T ∗

φi
Tφj

= 0, i �= j;
n∑

i=1

Tφi
T ∗

φi
= id.

Indeed every basis element has a form e[a,b]. Therefore,

T ∗
φi

Tφi
e[a,b] = T ∗

φi
T[φ−1

i (a),a]e[a,b] = T ∗
φi

e[φ−1
i (a),b]

= T[a,φ−1
i (a)]e[φ−1

i (a),b] = e[a,b].

Analogously, since Ei
⋂

Ej = ∅ we have T ∗
φi

Tφj
e[a,b] = 0. Finally if a ∈ Ek then(

n∑
i=1

Tφi
T ∗

φi

)
e[a,b] = Tφk

T[φk(a),a]e[a,b] = Tφk
e[φk(a),b]

= T[a,φk(a)]e[φk(a),b] = e[a,b].

Let us consider a uniformly closed subalgebra of B(l2(S)) generated by operators Tp, p ∈ S, and Tφi
,

i = 1, . . . , n. Denote it by C∗
red,n(S). The algebra C∗

red,n(S) is unital. Hence, it doesn’t coincide with
C∗

red(S). It is an extension of algebra C∗
red(S). Moreover the following lemma holds.

Lemma 6. The algebra C∗
red(S) is an ideal in C∗

red,n(S).

Proof. We have Tφi
T[a,b] = T[x,b] for some x ∈ K and T[a,b]Tφi

= T[a,y] for some y ∈ K. Since every
element A ∈ C∗

red(S) can be approximated by finite linear combinations of operators T[a,b] then Tφi
A and

ATφi
∈ C∗

red(S). �

Let us recall the definition of the Cuntz algebra. The finite Cuntz algebra On is a C∗-algebra
generated by isometries s1, . . . , sn satisfying to the following conditions:

s∗i sj = δijid,

n∑
i=1

sis
∗
i = id.

The infinite Cuntz algebra O∞ is a C∗-algebra generated by s1, s2, . . . and relations

s∗i sj = δijid,

n∑
i=1

sis
∗
i ≤ id
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for every n ∈ N.
Theorem 5. There exist an isomorphism C∗

red,n(S)/C∗
red(S) ∼= On and a short exact sequence

0 → C∗
red(S) id→ C∗

red,n(S) π→ On → 0,

where id is an embedding map and π is a quotient map.
Proof. Equivalence classes [Tφi

] = Tφi
+ C∗

red(S), i = 1, . . . , n, are generators of the quotient
algebra C∗

red,n(S)/C∗
red(S). These classes are isometric operators satisfying the following identity:

n∑
i=1

[Tφi
][T ∗

φi
] = id.

Due to the universality of the Cuntz algebra we observe that

C∗
red,n(S)/C∗

red(S) ∼= On.

�

Now let us represent the set K as a countable union of disjoint countable sets:

K =
∞⋃
i=1

Ei

and define operators Tφi
: l2(S) → l2(S) in the following way:

Tφi
=

⊕
x∈Ei

T[x,φi(x)], i = 1, 2, . . . .

By applying the reasoning used above one can prove the following equalities:

T ∗
φi

Tφi
= id; T ∗

φi
Tφj

= 0, i �= j;
n∑

i=1

Tφi
T ∗

φi
≤ id

for every n ∈ N.
Let us denote by C∗

red,∞(S) the uniformly closed subalgebra of B(l2(S)) generated by operators Tp,
p ∈ S, and Tφi

, i = 1, 2, . . ..
Similarly to the Lemma 6 the algebra C∗

red(S) is an ideal in C∗
red,∞(S) and for the infinite Cuntz

algebra the following theorem holds.
Theorem 6. There exist an isomorphism C∗

red,∞(S)/C∗
red(S) ∼= O∞ and a short exact sequence

0 → C∗
red(S) id→C∗

red,∞(S) π→O∞ → 0,

where id is an embedding map and π is a quotient map.
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