Экспресс-методы ПМР-релаксометрии определения вязкости и

концентрации асфальтенов в нефтях

*Кашаев Р.С., Киен Н.Т., Тунг Ч.В., Козелков О.В.

Казанский государственный энергетический университет, 420066, Казань, ул. Красносельская, 55, каф. ПМ, kashaev2007@yandex.ru

Дата поступления статьи _____ апреля 2019 г.

Аннотация Методом протонной магнитной резонансной релаксометрии (ПМРР) исследованы зависимости времен спин-решеточной и спин-спиновой релаксации $T_{1,2}$ и установлены их зависимости от вязкости и асфальтенов+смол нефтей, в частности месторождения Bach Ho (СП Вьетсовпетро). Уточнена корреляция $\eta T_{1,2} = \text{const}/T$ для характеристики вязких и асфальтеновых нефтей. Сделан вывод, что вязкость $v = \eta/\rho$ в данных нефтях экспоненциально пропорциональна концентрации асфальтенов+смол. Выведены уравнения, связывающие вязкость и концентрацию асфальтенов+смол с параметрами ПМР-релаксации.

Ключевые слова: релаксация, вязкость, концентрация асфальтенов, корреляция $\eta T_{1,2} = \text{const}/T$, параметры ПМР.

Введение

Метод протонной магнитной резонансной релаксометрии (ПМРР) еще не нашел широкого применения в промышленности для анализа веществ и материалов, хотя контроль параметров технологического процесса – важнейший инструмент управления. Это особенно ощущается в нефтедобывающей и химической промышленности, которая испытывает потребность в датчиках и приборах, которые могут контролировать параметры качества нефти, многофазных жидкостей и органических смесей, не разделяя их на фазы и не используя реактивов. Так, по ГОСТ 8.615-2005 [1] требуется оперативный контроль расхода, концентрации воды, газа и плотности добытой скважинной жидкости (СКЖ). Но погрешность измерения для высокообводненных нефтей с использованием существующих промышленных датчиков может достигать 15% [2], в то время, как при «бригадном учете» на промыслах требуется, чтобы точность была не хуже 2-3 %.

ПМРР является, пожалуй, единственным экспресс-методом, способным одновременно контролировать в сырой нефти многие ее параметры во всем диапазоне их изменений [3]. К преимуществам ПМРР относятся: универсальность и неразрушающий метод контроля, отсутствие контакта с исследуемой жидкостью и, следовательно,

1

отсутствие разрушающего действия агрессивных сред на оборудование; большое число контролируемых параметров и показателей - скорости потока υ (общей и покомпонентной), вязкости ν (в диапазоне 1-600 мм²/с), плотности ρ (в диапазоне 400-1100 кг/м³), концентрации воды W (в диапазоне 0-98%), парафина Π , асфальтенов $Ac\phi$ и смол C_M (в диапазоне 0-20 %), газонасыщенности G, содержание водорода H (0-100%), фазового состава. Важным является отсутствие потребности в расходных материалах; минимальное техническое обслуживание и отсутствие движущихся деталей; обеспечение взрыво-, токсической и пожарной безопасности.

Добыча, подготовка и транспортировка вязкой нефти с высоким содержанием парафина, особенно с морских месторождений, сложна и затратна. Поэтому анализ ее физико-химических свойств (ФХС), в частности вязкости и концентраций Π и *АсфСмол* важна для решения проблем, связанных с добычей и транспортировкой. Кыулонгский бассейн (Вьетнам), разрабатываемый совместным предприятием ВьетСовПетро, включает месторождения, крупнейшее из которых Bach Ho (Белый тигр). По данным сейсморазведочных работ Горюнов [4], некоторые нефти данного месторождения имеют кинематическую вязкость, достигающую $v_{50} = 27.6 \text{ мм}^2/\text{с}$, содержат парафина до $\Pi = 28.3\%$, *АсфСмол* = 14 %, и при комнатных температурах представляют собой ваксоподобное вещество. Это ведет к образованию асфальто-смолисто-парафиновых отложений (АСПО) в скважинных трубах, трубопроводах и сложностям при ее транспортировке и подготовке.

Целью работы является изучение протонных магнитно-резонансных (ПМР) параметров нефтей Bach Ho для определения причин их экстремальных ФХС и разработка экспресс-методов их контроля для принятия решений по способам обработки нефтей.

Эксперимент

Образцы, аппаратура и методики измерения

В зависимости от месторождений нефтей Вьетсовпетро наблюдается существенная разница в их ФХС (Табл.1). Для сравнительного анализа нами исследованы три образца месторождения Bach Ho №4, №3 и №2, существенно отличающиеся по плотности ρ , вязкости v_{50} и v_{70} , концентрациям парафинов Π и асфальтенов $Ac\phi$.

По результатам определения углеводородного (УВ) состава нефти образца №4 месторождения Bach Но методом *D*2892/D5236 [5] в нефти содержится в массовых %: н-

парафинов - 42.66; изо-парафинов - 33.43; нафтенов 20.44, ароматики 3.46%, причем парафины представлены в основном легкими молекулами в узком диапазоне числа углеродных атомов C₄-C₈, циклопарафины – в диапазоне чисел C₅- C₇ и бензола C₆.

Свойства	Месторождение						
	<u>N</u> <u>o</u> 4	№3 BK-8	№2 MSP-10	Gau trang	Trang		
Плотность 20 °С, $\rho(\Gamma/cM^3)$	0,8519	0,8678	0,879	0,8735	0,8315		
Температура конденсации нефти, <i>Т</i> _{конд} (°С)	35,5	34,5	38,5	34,4	28,7		
Вязкость кинематическая, v (мм ² / с):							
- при 50 ⁰ C	12,83	14,67	27,57	21,72	5,67		
- при 70 ⁰ C	6,60	7,66	16,62	11,19	3,44		
Вязкость динамическая, $\eta = v \rho$ (мПа·с):							
- при 50 ⁰ C	10,92	12,73	24,23	18.97	4,71		
- при 70 ⁰ С	5,60	6,65	14,61	9,77	2,86		
Содерж. парафина, П(%)	26,00	21,2	28,3	23,75	20,68		
Темп.плав парафина, °С	58,7	58,9	60,5	59,5	58,7		
Содерж. Асф.Смол,%	7,21	9,06	14,04	11,53	4,04		
Содержание серы, %	0.039-0.084	0.1	0.1	-	-		
Молекулярный вес, а.е.м.	257.7 – 295.7	285.9	362.1	-	-		

ФХС сырой нефти на месторождениях Вьетсовпетро Таблица 1.

Для решения поставленной цели работы использовался разработанный нами по ТУ 25-4823764.0031-90 и изготовленный в Конструкторском бюро резонансных комплексов - портативный переносной, с питанием от аккумулятора релаксометр ПМР-*NP*1 [6] (рис.1).

Рис.1. Портативный переносной, с питанием от аккумулятора релаксометр ПМР-NP2

Технические характеристики ПМР-NP2 в сравнении с лабораторными аналогами (портативных нет) приведены в Таблице 1.

T C	4
Гаолина	
гаолица	

	Портативный	Релаксометр	Minispec Pc	UNIX ST
Технические параметры	Релаксометр	ЯМР 08/РС	120 (Bruker,	500 (UNIX
	ПМР NP-2	(КБ РК,	ΦΡΓ)	Instr.)
	(КБРК,	Казань)		
	Казань)			
Отн. ошибка измерений времен	3/2	4/2	3	3
релаксации/амплитуд спин-эхо, %				
Критерий $K = v_0^2 V$, МГц ² ·см ³	2700 - 4150	1344	1600- 6400	1070
Резонансная частота, МГц	14.32	5 - 8	10 - 40	5-25
Диаметр ампулы датчика, мм	10-30	30	10-40	10-35
Питание:	=12 B, ≈220B	≈220 B	≈220 B	≈220 B
Потребляемая мощность, ВА	15	60	300	40
Габариты: Электронного блока, см	4x25x30	32x20x39	106x54x43	45x25x45
Магнита, см	20x15x10	20x15x10	106x54x43	15x17x15
Масса, кг	< 18	20	80	17

Технические характеристики ПМР-NP2

Критерий *К*, по которому оценивается амплитуда сигнала ЯМР на фоне шумов приемника, для портативного релаксометра ПМР составляет $K = v_0^2 D^3 [Mгц^2 cm^3] = 2700 - 4150 Mгц^2 cm^3$, где v – резонансная частота, D – диаметр датчика (высота катушки датчика равнялась диаметру). Правомочность оценки по критерию *К* вытекает из отношения сигнал/шум (*S/N*) в приемном тракте [7]:

$$S/N = 4\pi sn\omega_0 M_0 Q\eta \cdot 10^{-2} / 1.2 \cdot 10^{-6} (Z_0 \cdot \Delta v \cdot F)^{1/2}$$
(1)

где *s* – площадь витков приемной катушки, *n* – число витков, $\omega_0 = 2\pi v_0$ – угловая резонансная частота, $M_0 = (I+1)N_0\mu^2 B_0/3IkT$ – число спинов *I* в единице объема, N_0 – количество ядер в единице объема, μ – магнитный момент ядра, B_0 – индукция магнитного поля, *k* – постоянная Больцмана, *T* – температура в градусах Кельвина, *Q* – добротность контура приемной катушки, η – коэффициент заполнения катушки, Z_0 – сопротивление контура на частоте резонанса, Δv – полоса пропускания и *F* – шум-фактор приемника.

При оценке амплитуды сигнала по критерию K релаксометр близок к зарубежному аналогу – ЯМР-релаксометру "*Minispec pc*120" (*Bruker*,ФРГ). Минимальный интервал между импульсами $\tau = 100$ мксек, максимальное количество импульсов N = 10000, число накоплений – до n = 100. Задание параметров импульсных последовательностей осуществляется через клавиатуру Ноутбук и высвечивается на мониторе. Время измерения в среднем не более 2 минут. По показателю чувствительности $K = v_0^2 D^2 [10^6 \cdot \Gamma \mu^2 m^2] = 2285 \text{ M} \Gamma \mu^2 \text{сm}^3$ релаксометр ПМР-*NP*1 близок к зарубежному аналогу *Minispecpc*120.

Термостатирование образца осуществлялось в датчике ПМР [8], отличающемся малым температурным градиентом и низким уровнем электромагнитных шумов. В датчике термоэлементы на эффекте Пельтье, в зависимости от направления тока охлаждали или нагревали образец в диапазоне $-15^{\circ} \div +100^{\circ}$ C с точностью $\pm 0.5^{\circ}$ C.

В методе ПМР-релаксометрии зависимости огибающей амплитуд *A*_e спин-эхо, как правило, являются много экспоненциальными и описываются уравнениями:

$$A_{\rm e} = 1 - A_{\rm o} \sum [P_{\rm 1i} \exp(-t/T_{\rm 1i})] \tag{1}$$

$$A_{\rm e} = A_{\rm o} \sum [P_{\rm 2i} \exp(-t/T_{\rm 2i})] \tag{2}$$

где A_0 соответствует суммарной амплитуде сигнала, P_{1i} и P_{1i} - относительному числу протонов с разной степенью молекулярной подвижности, соответствующим T_{1i} , T_{2i} временам спин-решеточной и спин-спиновой релаксации протонных фаз i = A, B, C с населенностями (концентрациями спинов в долях от единицы) P_{Ai} , P_{Bi} и P_{Ci} .

Определение T_{1i} осуществлялось по ур.(1) с использованием последовательности 90^{0} - τ - 90^{0} - τ_{0} - 180^{0} Хана, где $\tau = 30$ -70 мс, $\tau_{0} = 300$ мкс; для определения T_{2i} использовалась многоимпульсная последовательность 90^{0} - τ_{1} - 180^{0} - $2\tau_{1}$ - 180^{0} - $2\tau_{1}$ - 180^{0} ... Карра- Парселла-Мейбум-Гилла (см.[3]), где $\tau_{1} = 300$ -500 мкс, устраняющая влияние диффузии и неточности установки длительностей импульсов. Погрешность амплитуды ПМР-сигнала при 8-разрядном АЦП $\gamma_{B} = \pm 0,2\%$. Линейность детектора > 40Дб. Погрешности однократных измерений времен релаксации составляли \pm 3-4 %, амплитудных \pm 2 % и могли быть снижены в $(n)^{1/2}$ раз путем *n* накоплений амплитуд сигналов спин-эхо ПМР.

Определение ПМР-параметров осуществлялось путем построения огибающей в полулогарифмическом масштабе от времени и графоаналитического разделения полиэкспоненциальной огибающей на три компоненты (см. напр.[7]). После логарифмирования значений амплитуд спин-эхо через точки, при длинных временах ложащиеся на линейную зависимость, проводится прямая, в полулогарифмическом масштабе, описываемая уравнением $\ln(A_t/A_0) = -t/T_{2i} + \ln A_i$. Путем последовательного вычитания ИЗ экспериментальных точек данной И последующих прямых, соответствующих компонентам, последовательно получают $T_{1,2i}$ и $A_0P_{1,2i}$ для протонных фаз. За постоянную T_{1,2i} для каждой прямой принимается время, в течение которого амплитуда сигнала спин-эхо уменьшается в е раз. Огибающие разлагались на три компоненты i = A, B, C при различии времен релаксации в 4-10 раз.

Эксперимент и результаты эксперимента

Исследования нефтей Вьетсовпетро стандартными методами

На рис. 2 представлены зависимости кинематических вязкостей v₅₀(мм²/с) при 50 °C (кривая 1) v₇₀(мм²/с) при 70°C (кривая 2) нефтей Вьетсовпетро от концентрации парафина П. Ломаные кривые 3, 4 – v₅₀ и v₇₀ для образцов №3, 4 и 2.

Рис.2. Зависимости кинематических вязкостей v₅₀(мм²/с) при 50 °C (кривая 1) v₇₀(мм²/с) при 70°C (кривая 2) нефтей Вьетсовпетро от концентрации парафина *П*, ломаные кривые 3, 4 – v₅₀ и v₇₀ для исследованных образцов №3, 4 и 2.

Как это видно из рис.2, зависимость вязкостей v_{50} и v_{70} от парафина для всего массива нефтей при большом разбросе значений (коэффициент корреляции $R^2 < 0.2$) носит сложный характер и имеет тенденцию к снижению с ростом Π . Это аномально и не вписывается в существующие теории вязкости.

Зависимости вязкости v_{50} и v_{70} от *АсфСмол* представлены на рис.3.

Рис.3. Зависимости кинематических вязкостей v(мм²/с) нефтей №4, 3 и 2 при 50 °С (кривая 1) и 70°С (кривая 2) от концентрации *АсфСм* на фоне вязкостей v(мм²/с) нефтей Вьетсовпетро при 50 °С (кривая 3)

Зависимости кинематических вязкостей v(мм²/с) нефтей №4, 3 и 2 при 50 °С и 70°С от концентрации $Ac\phi Cm$ описываются с коэффициентами корреляции $R^2 = 0.98$ и среднеквадратической ошибкой S = 0.5 уравнениями:

$$v_{50}(MM^2/c) = 5.41 \exp(0.115Ac\phi C_M) \text{ при } 50^{\circ}\text{C}$$
 (3)

$$v_{70}(\text{мм}^2/\text{c}) = 2.31 \exp(0.1394 A c \phi C M)$$
 при 70°C (4)

В то время, как вязкости v_{50} (мм²/с) для всего массива нефтей Вьетсовпетро описываются с коэффициентом корреляции $R^2 = 0.549$ и S = 3.3 уравнением:

$$v_{50}(\text{MM}^2/\text{c}) = 4.5 \exp(0.047 A c \phi C_M)$$
(5)

Из рис.3 и ур.(3-5) видно, что v₅₀ и v₇₀ экспоненциально пропорциональна АсфСм.

Исследования нефтей Вьетсовпетро методами протонной магнитной резонансной релаксометрии

Полученные выше данные требуют дальнейших исследований, в том числе квантомеханическим методом ПМР-релаксометрии. Возможно, на поведении ФХС сказывается температура?

Как это отмечено в [9], по исследованиям н-парафинов, в работе [10] с точностью ± 2 % при температуре 295°C впервые была получена корреляция между вязкостью, временами спин-решеточной релаксации *T*₁ и температурой *T*:

$$T_1 = (2.712/\eta)(T/298) = (2.712/\nu\rho)(T/298)$$
(7)

Такая зависимость вытекает из зависимости скоростей $R_{1,2}$ протонной релаксации [11], состоящей из двух вкладов – внутримолекулярного и межмолекулярного:

$$(T_{1,2})^{-1} = 3\gamma^4 h^2 \tau_{\rm R} / 8\pi^2 \sum r_{\rm ij}^{6} + \pi \gamma^4 h^2 N_{\rm I} \tau_{\rm D} (1 + 2a_{\rm o} / 5D\tau_{\rm D}) / 4a_{\rm o}^{3}$$
(8)

где $\gamma/2\pi = 4256$ рад/с·гс – гиромагнитное отношение, $h = 6,626 \cdot 10^{-34}$ Дж/с – постоянная Планка, $N_{\rm I} = 6,75 \cdot 10^{28}$ м⁻³ – число спинов в см³, $a_{\rm o}$ – средний молекулярный диаметр, $r_{\rm ij}$ – среднее межпротонное расстояние, $\tau_{\rm R}$ и $\tau_{\rm D}$ – времена корреляции вращательного и трансляционного движений ($\tau_{\rm D} = a_{\rm o}/12D$), D – коэффициент самодиффузии и Аррениусова характера зависимости времен корреляции $\tau_{\rm R}$ и $\tau_{\rm D}$ от температуры T:

$$\tau_{\rm C} = \tau_{\rm o} \exp(E_{\rm A}/k_{\rm B}T),\tag{9}$$

где $E_{\rm A}$ – средняя энергия активации молекулярного движения, $k_{\rm B}$ – константа Больцмана, $\tau_{\rm o} = 1/\nu_{\rm o}$ – предэкспоненциальный множитель, $\nu_{\rm o} = \tau_{\rm o}^{-1}$ соответствует вибрационной частоте колебаний атомов между скачками. В высокотемпературном приближении $2\pi\nu\tau_{\rm R} <<1$ можно учитывать только $(T_{2\rm i})^{-1}$ от внутримолекулярного движения цепей и диполь-дипольного взаимодействия ассоциатов. Тогда, учитывая, что $\eta = \nu\rho = BT \exp(E_{\rm A}/RT)$, где B – постоянная, и подставив ур.(9) в ур.(8) получим:

$$\eta T_{1,2}/T = v \rho T_{1,2}/T = \text{const}/\Sigma r_{ij}^{-6}$$
(10)

т.е. постоянство r_{ij} должно приводить к постоянству $\eta T_2/T = \text{const}$, что и подтверждается для УВ и легких нефтей [10]. Но при переходе к тяжелым асфальтеновым и парафинистым нефтям ур.(10) не выполняется, и наблюдаются зависимости скоростей релаксации $R_{1,2} = (T_{1,2i})^{-1}$ от $10^3/TK$ с увеличивающейся крутизной с понижением температуры [12], что свидетельствует об изменениях энергий активации E_{Ai} молекулярного движения.

Зарубежными нефтяниками был установлен т.н. «standard alkali-line» - стандартная $\eta T_{1,2}/T$ -корреляция для н-алканов. Но нефтяная промышленность нуждается в $\eta T_{1,2}/T$ - корреляциях в расширенном диапазоне ФХС для тяжелых, асфальтеновых и парафинистых нефтей. В то же время ощущается недостаток в фундаментальном понимании механизмов, управляющих молекулярной организацией нефтяных дисперсных систем при высоких вязкостях, концентрациях парафинов и асфальтенов.

Morris и др. [13] по анализу 66 образцов установили корреляцию для нефти в виде:

$$T_{1,2} = 1.2/\eta^{0.9}$$
 или $\eta^{0.9}T_{1,2} = 1.2$ (11)

которая была модифицирована Vinegar [14] включением температуры *T* (в *K*):

$$T_{1,2} = (1.2/\eta)(T/298)$$
 или $\eta^{0.9}T_{1,2} = 1.2(T/298)$ (12)

Zhang [15] отметили влияние на указанную корреляцию растворенного в нефти воздуха и ввели степень 0.9 не только в $\eta^{0.9}$, но и (*T*/298)^{0.9}. Lo [16] определил корреляцию для дегазированных живых нефтей в виде:

$$T_{1,2} = (2.848/\eta) (T/298) \tag{13}$$

По результатам наших исследований [17] корреляции $\eta T_{1,2A}/T$ описываются уравнениями:

$$T_{1A} = (1.07/\rho^{0.3}v^{0.3})(T/298)$$
 для $\eta = 0.7 \div 6$ мПа·с (14)

$$T_{1A} = (2.78/\rho^{0.85} v^{0.85})(T/298)$$
для $\eta = 6 \div 60$ мПа·с (15)

$$T_{2A} = (0.68/\rho^{0.4}v^{0.4})(T/298)$$
 для $\eta = 0.7 \div 6$ сРа (16)

$$T_{2A} = (1.12/\rho^{0.8}v^{0.8})(T/298)$$
 для $\eta = 6 \div 60$ сРа (17)

Преобразуя ур.(15) и ур.(17) для высоких вязкостей получим зависимости $\eta(R_{1,2A})$ (рис.4):

Рис.4.Прямые зависимости динамических вязкостей $\eta = v\rho$ от скоростей релаксации $\eta(R_{1A}) -$ кривая 1, $\eta(R_{2A}) -$ кривая 2.

Или с учетом $v = \eta/\rho$, с $R^2 = 0.99$ S = 2 имеем простые уравнения для $v(R_{1,2A})$:

$$v = (3.33/\rho)(R_{1A})^{1.16}$$
(18)

$$v = (1.2/\rho)(R_{2A})^{1.21} \tag{19}$$

На рис.5. представлены зависимости концентраций $Ac\phi$ от измеренных времен $T_{1,2A}$ для нефтей Поволжья и Зап.Сибири (для образцов №2-4 Васh Но приведены данные $Ac\phi$ + *Смол*, поэтому они имеют завышенные значения – отдельные точки • кривой 3).

Рис.5. Зависимости концентраций $Ac\phi$ от измеренных времен $T_{1,2A}$ (кривые 1 и 2) для нефтей Поволжья и Зап.Сибири (для образцов №2-4 Васh Но приведены данные $Ac\phi + Смол$, поэтому они имеют завышенные значения – отдельные точки • кривой 3).

Они коэффициентами корреляции $R^2 = 0.956$ и S = 0.7 описываются уравнениями:

$$Ac\phi = 3.48\ln(T_{1A}) + 24 \tag{20}$$

$$Ac\phi = 2.2\ln(T_{2A}) + 14.3 \tag{21}$$

$$Ac\phi + C_{MOR} = 16.6\ln(T_{2A}) + 111$$
 (22)

Уравнения (18-22) могут быть использованы в качестве экспресс-метода определения вязкости и асфальтенов в нефти в процессе ее добычи и транспортировки.

Заключение и выводы

1. Методами протонной магнитной резонансной релаксометрии исследованы образцы №4 и №2 MSP-10 месторождения Bach Ho, существенно отличающиеся по вязкости, плотности, концентрациями парафинов и асфальтенов от отечественных нефтей.

2. Установлено, что на вязкость существенно влияет концентрация асфальтенов в нефти.

3. Установлено, что корреляции «вязкость-релаксация» для нефтей не могут быть интерпретированы по «вязкостному стандарту» и сделано уточнение для вязких нефтей.

4. Получены корреляции между вязкостью и концентрацией асфальтенов от скоростей и времен ПМР-релаксации.

Литература

1. ГОСТ 8.615-2005 «Государственная система обеспечения единства измерений. Общие метрологические требования».

2. Scott S.L. // The American Oil & Gas Reporter. - 2001. pp. 68-73.

3. Кашаев Р.С. Аппаратура и методики ЯМР-анализа нефтяных дисперсных систем. Lambert Academic publishing (LAP). GmbH&Co.KG, Saarbruken, Germany, 2012. – 92 с.

4. Горюнов Е.Ю., Нгуен М.Х.. Закономерности строения месторождений нефти и газа в фундаменте Кыулонгского бассейна (Вьетнам). // Нефть Газ. Москва, -2018. 4(64). С.18.

5. Quang Ngai. Crude Oil Assays Report # 02/2016. Bach Ho Crude Oil. Viet Nam National Oil and Gas Group "Binh Son Refining& Petrochemical Co., Ltd". -2016.

6. Патент РФ № 67719 РФ. Портативный релаксометр ЯМР G01N24/08 / Идиятуллин З.Ш., Кашаев Р.С., Темников А.Н. от 25.06.2007 г.

7. Чижик В.И. Ядерная магнитная релаксация. С-Пб. Изд. С-П. Университета. 2004. -388 с.

8. Патент РФ № 2319138. Р.С. Кашаев, З.Ш.Идиятуллин, А.Н.Темников. Бюлл. №7. -2008.

9. Shikhof I., Arns C.H.// Appl. Magn. Res. 47: 1391. -2016. Doi:10.1007/s00723-016-0830-4.

 Kashaev S.-H.G., Le B., Zinyatov M.Z.//Translation from Doklady Akademii Nauk SSSR 157(6). 1438. -1964.

11. Вашман А.А., Пронин И.С., Ядерная магнитная релаксация и ее применение в химической физике, Наука. М.: 1979. - 235 с.

12. Кашаев Р.С. Научные основы структурно-динамического анализа НДС методом ЯМР. Автореф. дисс. ...докт. техн.наук, М.: ИГИ РАН, 2001. - 268 с.

13. Morris C., Freedman R., Straley C., Johnson M., Vinegar H., Tutunjian P.//SPWLA 35-th Annual Logging Symposium, 1. -1994.

14. Vinegar H., in *Nuclear Magnetic Resonance Logging Short Course Notes*, ed. By Georgi D.T.// 36-th *Annual Logging Symposium*.1. -1995.

15. Zhang Q., Lo S.-W., Huang C.C., Hirasaki G.J., Kabayashi R., House W.V. // 39-th Annual Logging Symposium, 1. -1998.

16. Lo S.-W., Dissertation, Rice University. -2002.

17. Kashaev R.S. // Appl. Magnet. Resonance, 49. 309. -2018. <u>https://doi.org/10.1007/s00723-</u> 018-0977-2

Авторская справка

Кашаев Рустем Султанхамитович, д.т.н., профессор каф. Приборостроение и мехатроника Казанского государственного энергетического университета, 420066, Казань, Красносельская, 51, с.т. 8-904-7158012, <u>kashaev2007@yandex.ru</u>

<u>Киен Нгуен Тиен</u>, аспирант проф.Кашаева Р.С., каф. Приборостроение и мехатроника, Казанского государственного энергетического университета, 420066, Казань, ул. Красносельская, 51, с.т. 8-904-7158012, <u>kashaev2007@yandex.ru</u>

<u>Тунг Чан Ван</u>, аспирант проф.Кашаева Р.С., каф. Приборостроение и мехатроника Казанского государственного энергетического университета, 420066, Казань, ул. Красносельская, 51, с.т. 8-904-7158012, <u>kashaev2007@yandex.ru</u>

<u>Козелков Олег Владимирович</u>, доцент кафедры «Приборостроение и мехатроника», Казанского государственного энергетического университета, 420066, Казань, ул. Красносельская, 51, сот.тел. 89047621007, эл. Почта ok.1972@list.ru

Справка

Статья не послана в другие журналы Проф. Кашаев Р.С.

25.04.2019