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Abstract—The paper deals with the reduced semigroupC∗-algebraC∗
r (Z�ϕ Z

×) for the semidirect
product Z �ϕ Z

× of the additive group Z of all integers and the multiplicative semigroup Z
×

of integers without zero. The semigroup homomorphism ϕ acts from Z
× to the endomorphism

semigroup of Z as follows. It takes every positive integer to the identity endomorphism of Z and
every negative integer to the inversion of Z. The purpose of the paper is to demonstrate that
the C∗-algebra C∗

r (Z�ϕ Z
×) and the infinite dihedral group D∞ are closely related. To this end, we

prove three results. Firstly, we show that the C∗-algebra C∗
r (Z �ϕ Z

×) is topologically graded over
the group D∞. In order to obtain this result, we use a general method for constructing topological
gradings. Previously, this method was proposed in the study of extensions of semigroups and the
reduced semigroup C∗-algebras associated with such extensions. As a consequence, the C∗-
algebra C∗

r (Z�ϕ Z
×) has a countable family of Fourier coefficients which is indexed by the elements

of D∞. Secondly, we construct a covariant representation of a non-commutative dynamical system
defined by means of the group D∞ into the C∗-algebra C∗

r (Z �ϕ Z
×). Thirdly, we establish an

isomorphism between the C∗-algebra C∗
r (Z �ϕ Z

×) and a crossed product of its C∗-subalgebra by
the group D∞.
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1. INTRODUCTION

The main object of our study is the reduced semigroup C∗-algebra for a semidirect product of the
additive group Z of all integers and the multiplicative semigroup Z

× of integers without zero.
The reduced semigroup C∗-algebras are very natural objects. They are generated by the left regular

representations of semigroups with the cancelation property. The start in studying these algebras was
made by Coburn [1, 2] who considered the reduced semigroup C∗-algebra for the additive semigroup of
the non-negative integers. Douglas [3] investigated the case of subsemigroups in the additive group
of the real numbers. Murphy [4, 5] generalized the results from [1–3] to the case of the reduced
semigroup C∗-algebras for the positive cones in ordered groups. These authors proved that the isometric
representations of the specified semigroups have the universal property.

For extensive literature and history of the study of semigroup C∗-algebras, the reader is referred, for
example, to [6] and the references therein.

The present paper is concerned with the reduced semigroup C∗-algebra C∗
r (Z �ϕ Z

×) for the
semidirect product Z �ϕ Z

× of Z and Z
× relative to the semigroup homomorphism ϕ from Z

× to the
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endomorphism semigroup of Z. The homomorphism ϕ takes every positive integer to the identity
endomorphism of Z and every negative integer to the inversion of Z.

The semigroupC∗-algebraC∗
r (Z�ϕ Z

×)was treated in [7, 8]. It was shown that this algebra provides
an example of C∗-algebra which is very interesting to study. In particular, it is closely related to the
finite dihedral groups. For instance ([7], Theorem 3.1), the semigroup C∗-algebra C∗

r (Z �ϕ Z
×) is

topologically graded over the dihedral groupDp for every p ≥ 2. Here, it is worth noting that the question
about the existence of a topological grading for a semigroup C∗-algebra is connected with the problem
on constructions of normal extensions for semigroups (see [7–10]).

In this paper, we demonstrate that the reduced semigroup C∗-algebra C∗
r (Z �ϕ Z

×) is also closely
related to the infinite dihedral group D∞. Firstly, we prove that this C∗-algebra can be topologically
graded over the group D∞. This result sheds light on the structure of the C∗-algebra C∗

r (Z �ϕ Z
×).

Furthermore, it implies the existence of a countable family of non-commutative Fourier coefficients
which is indexed by the elements of the group D∞. The crucial role in constructing the topological
grading for the C∗-algebra C∗

r (Z �ϕ Z
×) belongs to the notion of the σ-index of an operator monomial

which was introduced by the second-named author in [11, 12]. Secondly, we construct a covariant
representation of a non-commutative dynamical system into the C∗-algebra C∗

r (Z �ϕ Z
×). This

dynamical system is a triple (B,D∞, tr) consisting of a C∗-subalgebra B in the C∗-algebra C∗
r (Z �ϕ

Z
×), the group D∞ and the trivial action tr of D∞ on B. The C∗-subalgebra B is generated by a

countable family of isometries. Thirdly, we show that the C∗-algebra C∗
r (Z �ϕ Z

×) is isomorphic to the
crossed product of the C∗-subalgebra B by the group D∞ relative to the trivial action tr. To establish
this isomorphism, we use the amenability of the infinite dihedral group D∞ as well as some properties of
the spatial and the maximal tensor products of C∗-algebras.

Now we recall the definition of the reduced semigroup C∗-algebra.

Let S be a discrete left cancelative semigroup. As usual, the symbol l2(S) stands for the Hilbert space
of all square summable complex valued functions on S. For every a ∈ S, we denote by ea the function in
l2(S) which is defined as follows: ea(b) = 1, if a = b, and ea(b) = 0, if a �= b, where b ∈ S. Then, the set
of functions {ea | a ∈ S} is an orthonormal basis in the Hilbert space l2(S).

In the C∗-algebra of all bounded linear operators B(l2(S)) on the Hilbert space l2(S), we define the
C∗-subalgebra C∗

r (S) generated by the set of isometries {Ta | a ∈ S}, where Ta(eb) = eab for a, b ∈ S.
It is called the reduced semigroup C∗-algebra. The identity element in this algebra is denoted by I.

In the same way, the reduced group C∗-algebra C∗
r (G) is defined for a discrete group G. Namely,

it is the C∗-subalgebra in B(l2(G)) which is generated by the set of the unitary operators {Sg | g ∈ G},
where Sg(f)(h) = f(g−1h) whenever f ∈ l2(G) and g, h ∈ G. Of course, one has S∗

g = Sg−1 , where
g ∈ G.

We recall that there is another very important C∗-algebra defined for G. It is the full group C∗-
algebra C∗(G). In general, the group algebras C∗

r (G) and C∗(G) are not isomorphic. The amenability
of G guarantees the existence of an isomorphism between the group C∗-algebras C∗

r (G) and C∗(G).
For details, the reader is referred to ([13], Ch. IV, Sec. 7).

We notice that the C∗-crossed product is a generalization of the full group C∗-algebra for G. As is
well known, the C∗-algebra C∗(G) is the crossed product of the field of complex numbers by the group
G. The construction of the crossed product A�α G of a C∗-algebra A by a locally compact group G is
contained, for instance, in [14]. The C∗-crossed products are well studied and widely used in the theory
of operator algebras and mathematical physics.

The paper is organized as follows. It consists of introduction and two sections. The first section deals
with the proof of Theorem 1 on a topological grading of the reduced semigroup C∗-algebra C∗

r (Z�ϕ Z
×)

over the infinite dihedral group D∞. The second section is devoted to the results on non-commutative
dynamical systems and the C∗-crossed products. To obtain these results we firstly study the relations
between the generating elements of the reduced semigroup C∗-algebra C∗

r (Z�ϕ Z
×). Theorem 2 states

the existence of a covariant representation for the dynamical system (B,D∞, tr) into the C∗-algebra
C∗
r (Z �ϕ Z

×). In Theorem 3 we construct an isomorphism between the C∗-algebra C∗
r (Z �ϕ Z

×) and
the crossed product of the C∗-subalgebra B by the infinite dihedral group D∞.
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1334 GUMEROV, LIPACHEVA

2. TOPOLOGICAL GRADING FOR THE C∗-ALGEBRA C∗
r (Z �ϕ Z

×) OVER
THE DIHEDRAL GROUP D∞

In this Section we construct the reduced semigroup C∗-algebra C∗
r (Z �ϕ Z

×) and show that it is
topologically graded over the infinite dihedral group D∞.

As usual, we denote by Z the additive group of all integers. Let Z× be the multiplicative semigroup
Z \ {0} and let ϕ : Z× −→ End(Z) be the semigroup homomorphism from Z

× into the semigroup of
endomorphisms of the group Z given by

ϕ(m) :=

{
id, if m > 0;

inv, if m < 0,

where m ∈ Z
×, the symbol id stands for the identity endomorphism and inv means the inversion, that

is, inv(n) = −n whenever n ∈ Z. We consider the semidirect product of Z and Z
× with respect to ϕ

which is denoted by Z �ϕ Z
×. It is a semigroup with respect to the multiplication defined by

(m,n)(k, l) = (m+ ϕ(n)(k), nl), (1)

where m,k ∈ Z, n, l ∈ Z×. It is straightforward to verify that Z �ϕ Z
× is a semigroup with the

cancelation property and the unit (0, 1).
The reduced semigroup C∗-algebra C∗

r (Z �ϕ Z
×) of the semidirect product Z �ϕ Z

× is studied in
[7, 8]. We recall that this algebra is generated by the set of isometries {T(m,n) | m ∈ Z, n ∈ Z

×} in the
C∗-algebra B(l2(Z �ϕ Z

×)). As was mentioned above, we shall construct a topological grading for the
C∗-algebra C∗

r (Z �ϕ Z
×).

For the sake of completeness, we now give the definitions of graded and topologically graded C∗-
algebras. For details we refer the reader to the book [15, §§16.2, 19.2].

Let G be a group. A C∗-algebra A is said to be G-graded if there exists a family of linearly
independent closed subspaces {Ag}g∈G in A such that the following conditions are satisfied:

1) AgAh ⊂ Agh whenever g, h ∈ G;
2) A∗

g = Ag−1 for every g ∈ G;

3) A =
⊕

g∈GAg.

The family of Banach spaces {Ag}g∈G is called a C∗-algebraic bundle, or a Fell bundle, over the
group G. It is worth noting that, for the identity element e of G, the space Ae is a C∗-subalgebra in the
C∗-algebra A.

A G-graded C∗-algebra A with the Fell bundle {Ag}g∈G is said to be topologically graded if there
exists a contractive linear operator

F : A −→ Ae

which coincides with the identity operator on Ae and vanishes on each subspace Ag, where g ∈ G, g �= e.
In this case, the C∗-algebra A possesses the Fourier coefficients for all g ∈ G (see [15, § 19.6]). We recall
that a contractive linear operator

Fg : A −→ Ag, g ∈ G,

is called a Fourier coefficient for A if Fg(A) = Ag for each finite sum A =
∑

h∈GAh.
Throughout this paper, the symbol D∞ stands for the infinite dihedral group. It can be defined as the

semidirect product of groups D∞ := Z �ψ Z2, where Z2 := Z/2Z = {0, 1} is the cyclic group of order
two, ψ : Z2 −→ Aut(Z) is the group homomorphism from Z2 to the automorphism group of Z such that

ψ(0)(n) = n and ψ(1)(n) = −n

whenever n ∈ Z.
Let us define the mapping σ as follows

σ : Z �ϕ Z× −→ D∞ : (m,n) �−→
{
(m, 0), if n > 0;

(m, 1), if n < 0.
(2)
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It is easily seen that σ is a surjective semigroup homomorphism.
In the sequel, we shall need a general method for constructing a topological grading over a groupG for

the reduced semigroup C∗-algebra C∗
r (S) under the assumption that there exists a surjective semigroup

homomorphism from a semigroup S onto G. This method was proposed in [11, 12]. It is based on the
notion of the σ-index of an operator monomial (see details in [12]).

Further, we give a brief description of this method.
Let S and G be a semigroup and a group respectively. Assume that there exists a surjective

semigroup homomorphism σ : S −→ G. We treat the free semigroup F(S) of monomials

Wa := T i1
a1T

i2
a2 ...T

ik
ak
, (3)

where a = (a1, ..., ak) is an element of the Cartesian product of k copies of the semigroup S, i1, ..., ik ∈
{−1, 1},k ∈ N.

Let the mapping ind : F(S) −→ G take each monomial (3) to the element ind (Wa) of the group G
given by

ind (Wa) = σ(a1)
i1σ(a2)

i2 ...σ(ak)
ik .

One can easily verify that the mapping ind is a surjective semigroup homomorphism. The image
ind (Wa) of a monomial Wa under this homomorphism is called the σ-index of the monomial Wa.

For every monomial (3), we have the operator Ŵa ∈ B(l2(S)) defined by Ŵa := T̂ i1
a1 T̂

i2
a2 ...T̂

ik
ak
, where

T̂ 1
a := Ta and T̂−1

a := T ∗
a . The operator Ŵa is called an operator monomial.

In ([12], Lemma 1), it is shown that for two monomials Wa and Wb the condition Ŵa = Ŵb implies
the equality ind (Wa) = ind (Wb). As a consequence, the notion of the σ-index of an operator
monomial is well-defined.

For every g ∈ G, the symbol Ag stands for the subspace in the C∗-algebra C∗
r (S) which is the closure

of the linear span of all operator monomials with the σ-index g.
According to ([12], Theorem 2), this method yields a topological grading for the reduced semigroup

C∗-algebra C∗
r (S). In other words, the family of Banach spaces {Ag | g ∈ G} satisfies the above-

mentioned properties.
In the similar way, we obtain the following result.
Theorem 1. The reduced semigroup C∗-algebra C∗

r (Z �ϕ Z×) is topologically graded over the
infinite dihedral group D∞.

Proof. Indeed, we are given the surjective semigroup homomorphism

σ : Z �ϕ Z× −→ D∞

defined by (2). It remains to apply the method described above and ([12], Theorem 2). �

Corollary 1. Let the surjective semigroup homomorphism σ be defined by (2). For every
d ∈ D∞ let Ad denote the Banach subspace in the C∗-algebra C∗

r (Z �ϕ Z×) generated by all
operator monomials with the σ-index d. Then, there exists a Fourier coefficient

Fd : C∗
r (Z �ϕ Z×) −→ Ad.

3. REPRESENTATION OF THE C∗-ALGEBRA C∗
r (Z �ϕ Z

×) AS A CROSSED PRODUCT

In this section we show that the C∗-algebra C∗
r (Z �ϕ Z

×) can be represented as a crossed product
of its subalgebra by the infinite dihedral group D∞.

We begin by recalling the necessary notions concerning the crossed products of the unital C∗-
algebras by the discrete groups. The definition of the crossed product of an arbitrary C∗-algebra by
a locally compact group is contained, for example, in [14]. It is worth noting that the author of [16] treats
the crossed products in the terms of the universal property.

Let A be a unital C∗-algebra, G be a discrete group and α : G −→ Aut(A) be a homomorphism of
groups. The triple (A, G, α) is called a dynamical system.
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A covariant representation of the dynamical system (A, G, α) is a pair (π, u) consisting of a
representation π : A −→ B(H) and a unitary representation u : G −→ B(H) for a Hilbert space H such
that

π(αg(a)) = u(g)π(a)u(g)∗

for all a ∈ A and g ∈ G ([14], pp. 43–44). Certainly, one can say about a covariant representation of a
dynamical system into a C∗-algebra.

The crossed product of A by G is a triple (A�α G, iA, iG), where A�α G is a C∗-algebra,
iA : A −→ A�α G is a unital ∗-homomorphism of C∗-algebras, iG : G −→ U(A�α G) is a group
homomorphism from the group G to the group U(A �α G) of unitary elements of A�α G satisfying
the following conditions

1) iA(αg(a)) = iG(g)iA(a)iG(g)∗ whenever a ∈ A, g ∈ G;

2) for every covariant representation (π, u) of the dynamical system (A, G, α) there exists a unital
representation π � u : A�α G −→ B(H) such that

(π � u) ◦ iA = π and (π � u) ◦ iG = u;

3) the C∗-algebra A�α G is generated by the set {iA(a)|a ∈ A} ∪ {iG(g)|g ∈ G}.

The C∗-algebra A�α G itself is also called the crossed product of A by G.

It is worth noting that for every dynamical system (A, G, α) there exists a crossed product. Moreover,
it is unique up to isomorphism. For proving these facts we refer the reader to [16]. It is also shown there
that the crossed product possesses the following universal property.

Let B be a unital C∗-algebra, jA : A −→ B be a unital ∗-homomorphism of C∗-algebras, jG : G −→
U(B) be a group homomorphism from the group G to the group U(B) of unitary elements in B such that

jA(αg(a)) = jG(g)jA(a)jG(g)
∗

for all a ∈ A and g ∈ G. Thus, the pair (jA, jG) is a covariant representation of the dynamical system
(A, G, α) into theC∗-algebra B. Then, there exists a unique unital ∗-homomorphismψ : A�α G −→ B
satisfying the conditions

ψ ◦ iA = jA and ψ ◦ iG = jG.

Now let us turn to the reduced semigroup C∗-algebra C∗
r (Z �ϕ Z

×). For its generating elements we
introduce the notation Um := T(m,1), m ∈ Z, and Vk := T(0,k), k ∈ Z

×. It is easily seen that U∗
m = U−m.

Hence, the operator Um is unitary for every m ∈ Z.

Lemma 1. The following properties are fulfilled.

1) The operator V−1 is self-adjoint and unitary, i.e., V−1 = V ∗
−1, V 2

−1 = I.

2) For all m ∈ Z, n ∈ N, one has

UmVn = VnUm, UmV−1 = V−1U−m, VnV−1 = V−1Vn,

V ∗
n V−1 = V−1V

∗
n , UmV ∗

n = V ∗
nUm.

3) The C∗-algebra C∗
r (Z �ϕ Z

×) is generated by two unitary operators U1, V−1 and the
isometries Vn, n ∈ N.
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Proof. 1) The second relation is easily verified. Namely, one has V 2
−1 = T 2

(0,−1) = T(0,1) = I.

Multiplying both sides of this equality on the left by V ∗
−1, we get V−1 = V ∗

−1, as required.
2) The first three relations follow from the multiplication rule of the elements in the semigroup

Z �ϕ Z× defined by (1). Let us check one of them. For instance, we have

UnV−1 = T(n,1)T(0,−1) = T(n,−1) = T(0,−1)T(−n,1) = V−1U−n.

Further, we note that VnV−1 = V−1Vn and UmVn = VnUm. Applying the involution to both these
equalities and using the properties of the operators V ∗

−1 and U∗
n, we get the rest two relations.

3) If n > 0, then we have

T(m,n) = UmVn = Um
1 Vn. (4)

If n < 0, then
Vn = T(0,−n)T(0,−1) = V|n|V−1. (5)

On substituting (5) into (4), we get T(m,n) = Um
1 V|n|V−1. As a consequence, the reduced semigroup

C∗-algebra C∗
r (Z �ϕ Z

×) is generated by operators U1, V−1 and Vn, n ∈ N. �

As is well known, the infinite dihedral group D∞ = Z �ψ Z2 can be defined by means of generators
and relations as follows

D∞ ∼= {x, y|y2 = 1, (xy)2 = 1}.
Of course, this isomorphism takes the elements (1, 0) and (0, 1) to the generators x and y respectively.

In the C∗-algebra C∗
r (Z �ϕ Z

×) we consider the C∗-subalgebra B generated by the elements Vn,
n ∈ N. Let

tr : D∞ −→ AutB : d �−→ id

be the trivial homomorphism which takes each element d ∈ D∞ to the identity automorphism of B.
Thus, we are given the dynamical system (B,D∞, tr) as well as the corresponding crossed product
(B�tr D∞, iB, iD∞).

Theorem 2. There exists a covariant representation of the dynamical system (B,D∞, tr) into
the C∗-algebra C∗

r (Z �ϕ Z
×).

Proof. Firstly, let us consider the natural embedding of the C∗-subalgebra B into C∗
r (Z �ϕ Z

×)
denoted by

ι : B −→ C∗
r (Z �ϕ Z

×) : B �−→ B.

Secondly, we define a homomorphism u from the group D∞ to the group of unitary elements of the
C∗-algebra C∗

r (Z �ϕ Z
×) in the following way. Put

u(x) = U1, u(y) = V−1. (6)

By Lemma 1, we have the relations

(u(y))2 = V 2
−1 = I, (u(x)u(y))2 = (U1V−1)

2 = U1V−1U1V−1 = V−1U
∗
1U1V−1 = I

which imply that the assignment (6) defines the homomorphism between the groups.
It remains to show that the pair (ι, u) is a covariant representation of the dynamical system

(B,D∞, tr) into the C∗-algebra C∗
r (Z �ϕ Z

×), that is, ι(B) = u(d)ι(B)u(d)∗ whenever B ∈ B and
d ∈ D∞. To prove this relation, it suffices to show that every element of the algebra B commutes with
the elements U1 and V−1. But, by item 2) in Lemma 1, it is valid for the generators Vn and V ∗

n of the
C∗-algebra B whenever n ∈ N. The rest is clear. �

Corollary 2. There exists a unique unital ∗-homomorphism of C∗-algebras

ψ : B�tr D∞ −→ C∗
r (Z �ϕ Z

×)

such that ψ(iB(Vn)) = Vn, ψ(iD∞(x)) = U1 and ψ(iD∞(y)) = V−1.
By item 3) in Lemma 1, the homomorphism ψ is surjective. Furthermore, it follows from the following

theorem that ψ is an isomorphism of C∗-algebras B�tr D∞ and C∗
r (Z �ϕ Z

×).
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Theorem 3. There exists an isomorphism of C∗-algebras φ : C∗
r (Z �ϕ Z

×) −→ B�tr D∞ such
that φ(U1) = iD∞(x), φ(V−1) = iD∞(y), φ(Vn) = iB(Vn).

Proof. We first take the Cartesian product N×D∞ for the multiplicative semigroup of the
natural numbers N and the dihedral group D∞. Here, we treat N×D∞ as the semigroup with the
coordinatewise binary operation.

Next, let us define the mapping

α : Z �ϕ Z
× −→ N×D∞ : (m,n) �−→

{
(n, (m, 0)), if n > 0;

(−n, (m, 1)), if n < 0 ;

whenever m ∈ Z, n ∈ Z
×. It is straightforward to verify that α is an isomorphism of the semigroups.

Therefore, we have the isomorphism of C∗-algebras

β : C∗
r (Z �ϕ Z

×) −→ C∗
r (N×D∞) : T(m,n) �−→ Tα(m,n).

Using the unitary operator between the Hilbert spaces

l2(N×D∞) −→ l2(N)⊗̇l2(D∞) : e(n,d) �−→ en ⊗ ed,

one gets the isomorphism of C∗-algebras given by

C∗
r (N×D∞) −→ C∗

r (N)⊗min C∗
r (D∞) : T(n,d) �−→ Tn ⊗ Sd (7)

whenever n ∈ N and d ∈ D∞ [17, Lemma 2.16].

We claim that the C∗-algebra C∗
r (N) is isomorphic to the C∗-subalgebra B of C∗

r (Z �ϕ Z
×) which

is generated by the operators Vn, where n ∈ N. Indeed, to show this, we first consider the isometric
∗-homomorphism from [10, Theorem 2.1] given by

γ : C∗
r (N) −→ C∗

r (N×D∞) : Tn �−→ T(n,(0,0)).

Of course, the corestriction γ̃ : C∗
r (N) −→ γ(C∗

r (N)) of γ to the image set γ(C∗
r (N)) is an isomor-

phism of C∗-algebras. Then, we consider the isomorphism of C∗-algebras

β0 : B −→ β(B) : Vn �−→ β(Vn) = Tα(0,n) = T(n,(0,0)).

Taking the composition β−1
0 ◦ γ̃ : C∗

r (N) −→ B, we obtain the isomorphism between the C∗-algebras
C∗
r (N) and B, as claimed. Note that one has

β−1
0 ◦ γ̃(Tn) = Vn.

Denoting by id : C∗
r (D∞) −→ C∗

r (D∞) the identity mapping and using ([18], Proposition B.13), we
have the isomorphism of C∗-algebras

(β−1
0 ◦ γ̃)⊗ id : C∗

r (N)⊗min C∗
r (D∞) −→ B⊗min C∗

r (D∞) (8)

such that for all n ∈ N and d ∈ D∞

(β−1
0 ◦ γ̃)⊗ id(Tn ⊗ Sd) = Vn ⊗ Sd.

Further, we note that the infinite dihedral group D∞ is amenable (see, for example, [19], Section 1).
This implies that the C∗-algebra C∗

r (D∞) is nuclear [20], and it coincides with the full C∗-algebra
C∗(D∞) ([13], Remark IV.7.68). Thus, we have

B⊗min C∗
r (D∞) = B⊗max C

∗(D∞). (9)

Taking the composition of isomorphisms (7) and (8) and making use of the equality (9), we get the
isomorphism of C∗-algebras

δ : C∗
r (N×D∞) −→ B⊗max C

∗(D∞)

such that δ(T(n,d)) = Vn ⊗ Sd whenever n ∈ N and d ∈ D∞.
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It is easy to see that the isomorphism of C∗-algebras

δ ◦ β : C∗
r (Z �ϕ Z

×) −→ B⊗max C
∗(D∞)

takes the generating operators Vn, U1 and V−1 to the elements Vn ⊗ I, I ⊗ Sx and I ⊗ Sy respectively.
Since the group homomorphism tr : D∞ −→ AutB is trivial, we have the isomorphism of C∗-

algebras

ε : B⊗max C
∗(D∞) −→ B�tr D∞

such that ε(B ⊗ Sd) = iB(B)iD∞(d) whenever B ∈ B and d ∈ D∞ (see the proof of Lemma 2.73
in [14]).

Finally, we put φ := ε ◦ δ ◦ β. Then, the mapping

φ : C∗
r (Z �ϕ Z

×) −→ B�tr D∞

is an isomorphism of C∗-algebras such that

φ(Vn) = iB(Vn), φ(U1) = iD∞(x), φ(V−1) = iD∞(y)

for the generating elements Vn, U1 and V−1 of the C∗-algebra C∗
r (Z �ϕ Z

×), as required.
The proof of the theorem is complete. �

Theorem 3 and Corollary 2 imply
Corollary 3. The following properties are fulfilled.

1) ψ : B�tr D∞ −→ C∗
r (Z �ϕ Z

×) is an isomorphism of C∗-algebras which is inverse for φ :
C∗
r (Z �ϕ Z

×) −→ B�tr D∞;

2) φ is the unique isomorphism from C∗
r (Z�ϕ Z

×) onto B�tr D∞ which takes U1, V−1 and Vn,
to iD∞(x), iD∞(y) and iB(Vn) respectively.
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