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Abstract

Painlevè equation for conformal blocks is a combined corollary of integrability and Ward identities, 
which can be explicitly revealed in the matrix model realization of AGT relations. We demonstrate this in 
some detail, both for q-Painlevè equations for the q-Virasoro conformal block, or AGT dual gauge theory 
in 5d, and for ordinary Painlevè equations, or AGT dual gauge theory in 4d. Especially interesting is the 
continuous limit from 5d to 4d and its description at the level of equations for eight τ -functions. Half of 
these equations are governed by integrability and another half by Ward identities.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

AGT relations [1] identify LMNS integrals [2], or Nekrasov functions [3] and 2d conformal 
blocks [4]. They are best understood [5] as a Hubbard-Stratanovich duality in the Dotsenko-
Fateev [6] matrix model [7,8] (which belongs to the class of Penner type models with logarithmic 
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potential). An amusing corollary [9] (see also later development in [10]) is that a peculiar linear 
combination of conformal blocks satisfies the Painlevè VI equation [11], which a priori seems 
to have nothing to do with any of the ingredients of Nekrasov/AGT/matrix model theory. More-
over, this Painlevè equation turns out to result from the two complementary features of matrix 
models [12]: integrability and Ward/Virasoro identities, which are alternatively combined into 
a superintegrability property [13] of these models, which is now understood [14] to be the true 
origin of Nekrasov calculus. This can imply a more direct connection between superintegrability 
and Painlevè, which, however, needs to be investigated better and stays beyond the scope of the 
present paper.

The Dotsenko-Fateev (DF) matrix model is not Gaussian, therefore it has numerous Dijkgraaf-
Vafa phases, differing by the choice of integration contours. The problem is that for a particular 
choice of the phase (unless all the contours are just the same), the partition function does not 
possess a determinant representation, and is not a KP τ -function. Instead, τ -functions arise as 
simple linear combinations of DF integrals [15], and particular DF integrals appear as (inverse) 
Fourier transform of τ .

It turns out that the best language study integrability in DF models is that of Hirota equations 
in Miwa variables, which are naturally finite-difference. These are the equations that describe a 
special kind of τ -functions known as (q-)Painlevè VI τ -function. Amusingly, they can be rewrit-
ten in terms of eight(!) different τ -functions, which are actually 8 different shifts of the original 
KP τ -function. In this system, one can observe that equations for exactly one half of these func-
tions are actually related to linear equations though in a very tricky way. Not surprisingly, this 
means that the system is split into two parts: quadratic integrable and (having linear origin) Ward 
identities. Actually, it turns out that they split in exactly equal parts: four and four. As already 
mentioned, it would be very interesting to understand, if and how this result is linked to an alter-
native unification, that in terms of mysterious factorization of correlators, single and pair [13,17], 
nicknamed superintegrability in [18]. We started to investigate this relation in [13,19,17], but 
there is still a long way to go.

In DF models, one can restrict the central charge to c = 1. This excludes the β-deformation 
and guarantees that there is no intrinsic breakdown of integrability. Still, there is a whole variety 
of deformations labeled by parameter t = q (in general t = qβ ). If one is looking at the gauge 
theory side of the AGT correspondence, q �= 1 is related to 5d gauge theories [16], and q encodes 
the radius of the fifth-dimension. The limit q −→ 1 corresponds to taking the radius to zero, when 
the 5d gauge theory reduces to 4d . This limit looks “continuous” at the level of Virasoro-like 
Ward identities, when difference operators for q �= 1 become differential for q = 1.

The aim of the present paper is two-fold. First of all, we give a review of the above subjects and 
collect various ideas scattered through [20–22] in a single text. Second, we explain how different 
pieces of the construction behave in the non-autonomous limit from 5d to 4d gauge theory. We 
demonstrate that the most important structures survive after taking the limit. In particular, we 
follow carefully the relation “integrability + string equation = Painlevè” and demonstrate that is 
consistent with the continuous limit. Therefore, we make a step in clarifying the relation between 
the τ -function of the q-Painlevè VI equations provided by the 5d Nekrasov function and the τ -
function of the continuous Painlevè VI equations provided by its 4d limit.

Note that the continuous limit is rather simple in terms of the DF matrix model, but is rather 
complicated in terms of bilinear equations. We illuminate this limiting procedure and outline, 
how structures such as q-Virasoro constraints, bilinear equations and q-Painlevè equations be-
have. As an additional result of taking the limit, we obtain another representation of the Painlevè 
τ -function in terms of conformal blocks.
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The paper is organized according to this logic. First, we review general properties of matrix 
models in Dijkgraaf-Vafa phases (Section 2) and in Miwa variables (Sections 3). Then, we start 
directly from the q-deformed case in section 4 and proceed to the description of the continu-
ous limit in section 5. In section 6, we discuss an important particular case when conformal 
blocks are degenerate, which is AGT-related to the pure gauge theory limit. In this case, the DF 
model is substituted by the Brezín-Gross-Witten (BGW) matrix model [23], and its relation to 
the Painlevè equation becomes especially simple and transparent. This next digression gives rise 
to the Painlevè III equation. Conclusion in section 7 briefly summarizes our claims.

2. Integrability of matrix models in Dijkgraaf-Vafa phases

2.1. Hermitian matrix models

Throughout the paper, we discuss only the Hermitian one matrix model with the partition 
function given by the integral over N × N Hermitian matrix X:

Z
(μ)
N {tk} = 1

VolN

∫
DXμ(X) exp

( ∞∑
k=1

tkTrXk

)
(1)

Here DX is the Haar measure on Hermitian matrices, μ(X) is an arbitrary invariant function on 
them, and VolN is the volume of the unitary group U(N). The integral is understood as a power 
series in time variables tk provided all the moments of the distribution dXμ(X) are defined. The 
simplest choice of μ(X) is the Gaussian distribution:

μ(X) = exp
(

− 1

2
TrX2

)
(2)

One can also integrate out the angular variables in the integral (1), and the remaining integral 
over eigenvalues xi of the matrix X is

Z
(μ)
N {tk} = 1

N !
∞∫

−∞

N∏
i=1

dxiμ(xi) exp

(∑
k

tkx
k
i

)
�2(x) (3)

where �(x) is the Vandermonde determinant, �(x) = ∏
i>j (xi − xj ).

2.2. Dijkgraaf-Vafa phase

A more tricky case is the choice of a cubic exponential, when one has to choose the pure 
imaginary coefficient in front of cubic term in order to guarantee convergence properties (I here 
denotes the imaginary unit):

Z
(3)
N {tk} = 1

N !
∞∫

−∞

N∏
i=1

dxi exp

(
Ix3

i +
∑

k

tkx
k
i

)
�2(x) (4)

However, one may consider a more general model eigenvalue model, with the same integrand but 
with arbitrarily chosen contours. We will always choose the contours going to infinities. Then, 
in the cubic case, there are two independent ways to choose the contour, these two contours C1,2
correspond to two different solutions to the Airy equation. Hence, the partition function of this 
3
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model is parameterized additionally by two integers N1 and N2 that parameterize the number of 
contours of each type, and N1 + N2 = N is still the number of xi :

Z
(3)
N1,N2

{tk} = 1

N1!N2!
∫
C1

N1∏
i=1

∫
C2

N1+N2∏
i=N1+1

dxi exp

(
x3
i +

∑
k

tkx
k
i

)
�2(x) (5)

This gives us a typical example of the Dijkgraaf-Vafa phase.

2.3. Integrability of matrix models

The partition function (1) has a determinant representation [24]:

Z
(μ)
N {tk} = det

1≤i,j≤N
Mi+j−2 = det

1≤i,j≤N

(
∂M

∂t1

)i+j−2

(6)

with the moment matrix

Mk :=
∫

dxμ(x)xk exp

(∑
k

tkx
k

)
(7)

that celebrates the property

∂M

∂tk
=

(
∂M

∂t1

)k

(8)

This guarantees that Z(μ)
N {tk} is a τ -function of the (forced) Toda chain hierarchy and, in partic-

ular, of the KP hierarchy w.r.t. time variables tk’s, with N playing the role of zeroth (discrete) 
time variable [24].

Now, if one considers the DV partition function (5), it is no longer a τ -function, and it does 
not have a determinant representation. However, one may consider the sum

ZF
N {tk} =

∑
N1+N2=N

ξ
N1
1 ξ

N2
2 Z

(3)
N1,N2

{tk} (9)

This sum can be also represented by the determinant (6) with the same moment matrix (7) where 
the integration runs over the formal sum of contours ξ1C1 + ξ2C2. Thus, ZF

N {tk} is still a τ -
function of the Toda chain hierarchy. Note that, because of the constraint N1 + N2 = N , the sum 
in this formula can be rewritten in the form

ZF
N {tk} = ξN

2

∑
N1+N2=N

ξN1Z
(3)
N1,N−N1

{tk}, ξ := ξ1

ξ2
(10)

Hence, up to inessential factor, it is just a discrete Fourier transform of the DV partition function, 
which gives rise to a τ -function of the integrable hierarchy:

ZF
N {tk} = det

1≤i,j≤N
Mi+j−2, Mk :=

⎛
⎜⎝ξ1

∫
C1

+ξ2

∫
C2

⎞
⎟⎠dxμ(x)xk exp

(∑
k

tkx
k

)
(11)

This is the key observation [15,22] that is used throughout this paper.
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3. Matrix models in Miwa variables

3.1. Painlevè from integrability and Virasoro constrains

One of the main features of the matrix model (1) is the existence of an infinite set of Virasoro 
constraints that it satisfies as a function of times tk: if one chooses measure in the form

μ(x) = exp

(∑
k

Tkx
k

)
(12)

then the constraints are

LnZ
(μ)
N {tk} = 0, n ≥ −1

Ln =
∑

k

k(Tk + tk)
∂

∂tk+n

+
n−1∑
a=1

∂2

∂ta∂tn−a

+ 2N
∂

∂tn
+ N2δn,0 + N(T1 + t1)δn+1,0 (13)

These equations reflect the invariance of the integral under any analytic change of integration 
variables respecting boundary conditions. It is known that reductions of the Virasoro constraints 
to a small set of time variables often produce Painlevè equations, which adds to the long-standing 
puzzle of the Painlevè property of reductions of integrable systems to ODE [25]. Let us demon-
strate how one can reduce the infinite system of Virasoro constraints for the partition function, 
which is a τ -function of integrable hierarchy to an ordinary differential equation. When this 
equation is of the second order, it is often contained in the Painlevè list [11].

To begin with, consider the Gaussian model with the measure (2), i.e. with Tk = − 1
2δk,2. Then, 

the lowest Virasoro constraint L−1Z
(2)
N {tk} = 0, which is called string equation, along with the 

integrability property guarantees that all the Virasoro constraints are satisfied [12,26–28]. Hence, 
one has the only additional restriction on the τ -function that gives rise to Z(2)

N {tk} = τ , that is, to 
the string equation(∑

k

(k + 1)tk+1
∂

∂tk
− ∂

∂t1
+ Nt1

)
Z

(2)
N {tk} = 0 (14)

Let us differentiate this equation in t1 and put all times zero but the first three: t1 = x, t2 = y, 
t3 = t . Then, one obtains from the string equation

2yux + 3tuy − ux = 0, u = ∂2
x logZ

(2)
N {x, y, t} (15)

Differentiating this equation in x and y and inserting the results into the KP equation,

−4uxt + 3uyy + 6(u2)xx + uxxxx = 0 (16)

one obtains at y = 0:

−12t2ut + ux − 6tu + 18t2(u2)x + 3t2uxxx = 0 (17)

In order to remove the term ut , one has to use the second Virasoro constraint, L0Z
(2)
N {tk} = 0:(∑

ktk
∂

∂tk
− ∂

∂t2
+ N2

)
Z

(2)
N {tk} = 0 (18)
k

5
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differentiate it twice in x and use (15) in order to remove uy and to obtain

3tut + 2u + xux − ux

3t
= 0 (19)

Expressing ut from this expression, one finally obtains the ordinary differential equation w.r.t. x
with t being just a parameter:

2tu +
(

4xt − 1

3

)
ux + 18t2(u2)x + 3t2uxxx = 0 (20)

This is the third order ODE, and, hence, it is not contained in the Painlevè list [11].
In order to get a simpler example, one can look at the Kontsevich model [29]. The partition 

function of this model satisfies the Virasoro constraints

L̂K
n ZK{t} = 0, n ≥ −1

L̂K
n := 1

2

∑
k

ktk
∂

∂tk+2n

+ 1

4

2n−1∑
a=1

∂2

∂ta∂t2n−a

+ t2
1

4
δn,−1 + 1

16
δn,0 − ∂

∂t2n+3

(21)

where the sums over k and a run over odd numbers since ZK{t} does not depend on t2k . Similarly 
to the Gaussian Hermitian model case, one can consider the case with only t1 and t5 non-zero. 
However, the ODE that one gets is simpler, since ZK{t} satisfies the simpler KdV hierarchy, 
which is the one-dimensional hierarchy. Indeed, from the string equation L̂K

n ZK {t} = 0, one 
obtains at t3 = 0

5t5ut + 1 = 2ux, u = ∂2
x logZK (22)

where we again denote t1 = x, t3 = t . Now, using the KdV equation, which is the y-independent 
reduction of the KP equation (16),

−4ut + 6(u2)x + uxxx = 0 (23)

one reduces (22) to

5t5uxx + 30t5u
2 + 4x − 8u = const (24)

This is the second Painlevè equation from [11] (after a shift of u and rescalings).

3.2. Hirota equations in Miwa variables

In the following, however, we are going, to study matrix models in a different parametrization, 
given by the so called Miwa transformation:

tk = 1

k

∞∑
a=1

2αaz
−k
a (25)

to Miwa variables za with multiplicities αa , which have an interpretation of eigenvalues of an 
external matrix: tk = 1

k
TrM−k and their multiplicities. After such a transformation, the integral 

(3) becomes

ZN (za;αa) := 1

N !
∫ ∏

dxiμ (xi)�2(x)
∏(

1 − xi

za

)2αa

(26)

i i,a

6
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Note that the Miwa factor in this integral,

∏
a

(
1 − xi

za

)2αa

= exp

(
2
∑
a

αa log

(
1 − xi

za

))
(27)

can be equally well interpreted as logarithmic additions to the potential of matrix model, which 
adds more DV phases. This means that one can govern DV phases by leaving only a finite number 
of Miwa variables. Any particular choice is in itself a reduction of the infinite set of variables.

Within this setting, we are going to study the Virasoro constraints and the Hirota equations. 
Even in the reduced space of Miwa variables, it is possible to write down closed expression for 
(some of) the Virasoro constraints. As for integrability in this case, one can write down the Hirota 
equations in the Miwa variables [30,29]. They become bilinear difference equations, for instance,

(za − zb) · ZN (αc + 1/2) · ZN (αa + 1/2, αb + 1/2)+
+ (zb − zc) · ZN (αa + 1/2) · ZN (αb + 1/2, αc + 1/2)+

+ (zc − za) · ZN (αb + 1/2) · ZN (αa + 1/2, αc + 1/2) = 0

(28)

Another example of Hirota bilinear relations, which is of interest for us, involves partition func-
tions with shifts in the zeroth (discrete) discrete Toda time N and, at za = 0, looks like

zb · ZN (αc − 1/2) · ZN−1 (αa + 1/2, αb + 1/2)−
− ZN (αa + 1/2, αc − 1/2) · ZN−1 (αb + 1/2)−

− zb · ZN (αb + 1/2, αc − 1/2) · ZN−1 (αa + 1/2) = 0
zc · ZN−1 · ZN (αa − 1/2, αb − 1/2, αc − 1/2)−
− ZN−1 (αa − 1/2) · ZN (αb − 1/2, αc − 1/2)−

− zc · ZN−1 (αc − 1/2) · ZN (αa − 1/2, αb − 1/2) = 0

(29)

3.3. Virasoro constraints in Miwa variables

The Virasoro constraints in Miwa variables are much less studied, and it is basically unknown 
how to systematically construct them. We state our current understanding of the problem.

Our observation is that the Virasoro constraints in Miwa parametrization can also be written 
in a bilinear form. Since we are interested in the DV phase, let us consider the simplest example, 
a toy example of the Beta-function model,

BN(α1, α2) =
1∫

0

N∏
i=1

dxi�
2(x)

N∏
i=1

x
2α1
i (1 − xi)

2α2 (30)

We start with the simplest N = 1 case. Insert a full derivative under the integral to obtain:

0 =
1∫

0

dx
∂

∂x

[
xnx2α1(1 − x)2α2

]
=

= (2α1 + n)B1 (α1 + n/2 − 1/2, α2) − 2α2B1 (α1, α2 − 1/2)

(31)

This equation definitely depends on the choice of measure, which is here trivial μ(x) = 1. On 
contrary, there is also an equation that is just the first of Hirota equations (29) for N = 1, zb = 1
and Z0 = 1, it looks like
7
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0 =
1∫

0

dx [x + (1 − x) − 1]x2α1(1 − x)2α2 =

= B1 (α1 + 1/2, α2) + B1 (α1, α2 + 1/2) − B1 (α1, α2)

(32)

and does not change with adding a non-trivial measure μ(x), since it is based on an identical 
vanishing the integrand. This is the simplest realization of the difference between integrability 
and Virasoro equations.
The N = 1 measure-dependent equations (31) are linear, however, it seems to be a peculiarity 
of this simple case, just as this is the case with the Hirota equation. Now let us illustrate the 
phenomenon that emerges when going to N = 2. Consider the lowest Virasoro constraint, which 
would correspond to the following insertion:

0 =
∫

dx1dx2
(
∂x1 + ∂x2

)[
(x1 − x2)

2
2∏

i=1

x
2α1
i (1 − xi)

2α2

]
= 	(α1, α2) . (33)

It is expressed in terms of correlators in the model, however, it can not be represented as an 
action of some difference operator acting on α. However, one can make it bilinear and rearrange 
the terms in the integrand by renaming the variables to obtain

0 = 	(α1, α2) · B1(α1, α2) = (2α1)B2 (α1 − 1/2, α2)B1 (α1 + 1/2, α2)−
− 2α2B2 (α1, α2 − 1/2)B1 (α1, α2 + 1/2) .

(34)

Hence, in order to realize the Virasoro constraints as an operator in Miwa coordinates acting 
on the partition function, one needs to make them bilinear and use some determinant identities 
in the integrand. This raises a question whether it is possible to really disentangle the Virasoro 
and integrability equations in this case. We do not have a clear answer at this point. However, 
as we see further, the bilinear form is quite natural for “measure-dependent” relations in the 
Dotsenko-Fateev matrix model.

The Hirota equation counterpart for the N = 2 Beta-function model is given by:

B2 (α1, α2)B1

(
α1 + 1

2
, α2 + 1

2

)
− B2

(
α1 + 1

2
, α2

)
B1

(
α1, α2 + 1

2

)
−

− B2

(
α1, α2 + 1

2

)
B1

(
α1 + 1

2
, α2

)
= 0

(35)

The Virasoro equations for the model with three non-zero multiplicities are presented in [21], 
here we clarified their origin using a simpler example.

q-deformation The quantum deformation of the matrix model amounts to replacing the inte-
grals with the Jackson integrals,∫

dqxf (x) = (1 − q)

∞∑
n=0

qnf (qnx) (36)

and substitutions(
1 − xi

za

)2αa

−→
(
z−1
a xi;q

)
2αa

(37)

where (x, q)n is the q-Pochhammer symbol:
8
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(x, q)n =
n−1∏
i=0

(1 − qix) (38)

Hence, the integral (26) becomes

ZN (za;αa) := 1

N !
∫ ∏

i

dqxiμ (xi)�2(x)
∏
i,a

(
z−1
a xi;q

)
2αa

(39)

The derivation of the q-Virasoro constraints is rather similar to the non-deformed case. Instead 
of ordinary derivatives, one should use q-difference operators

Dx
qf (x) = f (qx) − f (x)

q − 1
(40)

and the property of Jackson integrals∫
dqxDx

qf (x) = f (0) (41)

Let us deal with the example of the q-deformed Beta-function model:

B
(q)
N (α1, α2) =

∫
dqxi�

2(x)x
2α1
i (x, q)2α2 (42)

We use that∫
dqxi

N∑
i=1

Dxi
q

(
�2(x)x

2α1
i (x, q)2α2

)
= 0 (43)

and, manipulating with it in a manner similar to the non-deformed case, we obtain a bilinear form 
of the q-Virasoro constraint:

[2α1]qB
(q)
N (α1 − 1/2, α2)B

(q)

N−1 (α1 + 1/2, α2)−
− [2α2]qB

(q)
N (α1, α2 − 1/2)B

(q)
N1

(α1, α2 + 1/2) = 0
(44)

where we used the standard notation for quantum numbers:

[n]q = qn − 1

q − 1
(45)

As we see, the q-Virasoro constraints in Miwa variables do not differ much with the non-
deformed case.

4. q-deformed matrix model and q-Painlevè equations

4.1. DF representation for conformal blocks

The integral representation of the c = 1 conformal block of the Virasoro algebra, corre-
sponding to 4d gauge theory under the AGT correspondence, is given by the Dotsenko-Fateev 
representation [7,8],

B(�i,�, z) = Z · Z(4d) (46)
N

9
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Z
(4d)
N = z2α1α2(1 − z)2α2α3 · 1

N !
∫ ∏

i

dxi�
2(x)

∏
x

2α1
i (1 − xi)

2α2 (z − xi)
2α3 (47)

where the four external dimensions are parameterized by momenta: �i = α2
i , α4 is determined 

from the relation N + ∑4
i=1 αi = 0, and for the complicated coefficient Z, see [20, Eq.(7)-(8)].

(47) is a typical DV type integral similar to (5) but the potential is not cubic now, instead it 
is a sum of three logarithms [7,14] so that it has also two extremum points, and there are two 
independent integration contours: C1 = [0, z] and C2 = [1, ∞]. As before, N1 eigenvalues are 
integrated over C1, and N2 eigenvalues, over C2. The internal dimension of the conformal block 
(47), � = α2 is determined from the relation

N1 = α − α1 − α2, N2 = −α − α3 − α4 (48)

This means that, strictly speaking, the matrix model representations exist only when these two in-
tegrality conditions are imposed on the conformal momenta, while the conformal block at generic 
values of the external dimensions is obtained by the analytic continuation. This analytic contin-
uation is immediate for various expansions of the conformal block [31], but not that immediate 
for the determinant representation (6) that the matrix model partition function possesses, since it 
implies a determinant of a matrix of non-integer size. One possibility to handle this situation is 
to change a matrix determinant for an infinite-dimensional operator determinant. This idea was 
realized on the other side of the AGT story [10]. Their approach was actually applicable only for 
the case, when the conformal momenta satisfy

α1 ± α2 + α /∈Z, α1 ± α2 − α /∈ Z, α3 ± α4 + α /∈Z, α3 ± α4 − α /∈ Z (49)

which is complementary to the matrix model restriction on the conformal momenta (48). Note 
that their complicated functional determinants are nothing more than generalizations of the finite
ones, made from very simple hypergeometric functions, which arise at the “integer” locus (48).

As usual in the DV phase, in order to restore a τ -function of integrable hierarchy, one needs to 
perform a Fourier transform in the Ni parameters, which can be also understood as a summation 
in the conformal block internal dimension:

Z
(4d)
N (ξ1, ξ2) =

∑
N1,N2:N1+N2=N

ξ
N1
1 ξ

N2
2 · Z(4d)

N1,N2
(50)

After the Fourier transform from N1,2 to ξ1,2, (11) the integration contour is formally given by

∫
C

= ξ1

∫
C1

+ξ2

∫
C2

(51)

These integrals correspond to the general matrix model (26) in the phase where three Miwa 
variables are non-zero.

Note that, changing variables xi → zxi , one transforms the integrals over C1 to those over 
C = [0, 1]. Similarly, changing variables xi → x−1

i , one transforms integrals over C2 to those 
over C. This allows one to rewrite the integral (47) in the form
10
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Z
(4d)
N1,N2

=z2α1α2(1 − z)2α2α3 · 1

N1!N2!
1∫

0

N1∏
i=1

(
duiu

2α1
i (1 − zui)

2α2(1 − ui)
2α3

)
�2(u)×

×
1∫

0

N2∏
j=1

(
dvjv

−2α1−2α2−2α3−2N1−2
j (1 − vj )

2α2(1 − zvj )
2α3

)
�2(v)×

×
N1∏
i=1

N2∏
j=1

(
1 − zuivj

)2

(52)

Similarly, in the 5d gauge theory case, the starting point is the q-Virasoro conformal block, 
AGT dual to 5d gauge theory, and its realization in terms of matrix model (q-Selberg) integrals 
is [32]

Z
(5d)
N1,N2

=z2α1α2(z;q)2α2α3 · 1

N1!N2!×

×
∫ N1∏

i=1

(
z2α1+2α2+N1dquiu

2α1
i (ui;q)2α2

(zui;q)2α3

)
�2(u)×

×
∫ N2∏

j=1

(
dqvj v

−2α1−2α2−2α3−2N1−2
j

(
zvj ;q

)
2α2

(
vj ;q

)
2α3

)
�2(v)×

×
N1∏
i=1

N2∏
j=1

(
1 − zuivj

)2

(53)

In order to restore a τ -function of integrable hierarchy, one again needs a Fourier transform in the 
Ni parameters, which can be also understood as a summation in the conformal blocks internal 
dimension:

Z
(5d)
N (ξ1, ξ2) =

∑
N1,N2:N1+N2=N

ξ
N1
1 ξ

N2
2 · Z(5d)

N1,N2
(54)

4.2. Determinant representation for q-Virasoro conformal block

Now we first study the q-deformed case, since, even though the formulas are more involved 
in this case, they are actually better controllable.

One can write down the determinant representation (6) for the Fourier transform of the parti-
tion functions (which provides integrability):

Z
(5d)
N (ξ1, ξ2) = z2α1α2(z;q)2α2α3 · det

1≤i,j≤N
Mi+j−2 (55)

where the moment matrix (7) is, in this case,
11
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Mk =ξ1z
2α12+k+1

∫
dquu2α1+k(u;q)2α2(q

−1zu;q)−1
−2α3

+

+ ξ2 q−(2α1+1)(2α23+1)

∫
dqvv−2α1−2α2−2α3−2−k(q−1zv;q)−1

−2α2
(v;q)2α3 =

=ξ1 · z2α12+k+1 ·Bq (2α1 + k + 1,2α2 + 1) 2φ1

(
q−2α3, q2α1+k+1;q2α12+k+2;q, z

)
+

+ ξ2 · q−(2α1+1)(2α23+1) ·Bq (−2α123 − k − 1,2α3 + 1) 2φ1×
×

(
q−2α2, q−2α123−k−1;q−2α12−k;q, z

)
(56)

Here the q-Beta functions are given by:

Bq(α,β) =
1∫

0

dqxxα−1(x;q)β−1 = �q(α)�q(β)

�q(α + β)
(57)

with �q(α) being the q-�-function, and 2φ1 is the Heine basic hypergeometric series:

2φ1(a, b; c;q, z) :=
∞∑

n=0

(a;q)n(b;q)n

(c;q)n(q;q)n
zn (58)

For the sake of simplicity, some of the formulas below will be presented in the ξ2 = 0 case.

4.3. q-deformed Painlevè VI equation

The q-Painlevè VI equations are given by [33]:

w1(z)w1(qz)

a3a4
= (w2(qz) − b1z) (w2(qz) − b2z)

(w2(qz) − b3) (w2(qz) − b4)
(59)

w2(z)w2(qz)

b3b4
= (w1(z) − a1z) (w1(z) − a2z)

(w1(z) − a3) (w1(z) − a4)
(60)

The consistency condition for these equations requires the relation

b1b2

b3b4
= q

a1a2

a3a4
(61)

Rescaling the variables z, w1 and w2 and using the consistency condition, one can reduce the 
number of independent parameters to four. Throughout the paper, we use the parametrization 
dictated by association of the solution with the conformal block:

α1 + α2 + α3 + α4 + N = 0, a1 = q, a2 = q1−N−2α3 , a3 = q2−N, a4 = q2α2+1

b1 = q−2α2+1, b2 = q2α1+2α3+N+1, b3 = q2α3+1, b4 = q2α1+2α3+N+1

(62)

Note that there are exactly four free parameters qαi , i = 1, 2, 3, 4.
From equation (59), one can find w2(qz) as a function of w1(z)w1(qz) solving the quadratic 
equation. After rescaling the variable z → q−1z,

w1(q
−1z)w1(z) =

(
w2(z) − b1q

−1z
) (

w2(z) − b2q
−1z

)
(63)
a3a4 (w2(z) − b3) (w2(z) − b4)

12
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one can similarly find w2(z) as a function of w1(q
−1z)w1(z). Inserting these w2(z) and w2(qz)

into equation (60), one finds an equation expressing w1(qz) as a double-valued function of w1(z)

and w1(q
−1z), which represents a difference counterpart of the second order differential equa-

tion. The difference Painlevè equation shares various properties with the continuous equations, 
such as a certain analogue of the Painlevè property and a rich group of Bäcklund transformations.

4.4. 8 equations

The system of q-deformed Painlevè equations can be represented in terms of 8 bilinear equa-
tions for the τ -functions. One of the ways to obtain these equations is to study a discrete 
counterpart of the Painlevè property, i.e. moving of singularities of the equations. It is called 
singularity confinement criterion [34].
The discrete evolution starts with some initial condition w1(z). Suppose that w1(z) reaches the 
pole a3 in the course of evolution so that w(q−1z) is not at the pole yet. We assume generic 
initial data, which implies all the zeroes and poles are reached at different values of z. Now, at 
the pole w1(z) = a3, w2(z) is finite: otherwise, equation (63) leads to w1(q

−1z) = a4, i.e. to the 
pole value. As soon as w2(z) is finite at w1(z) = a3, w2(qz) = ∞, and, as follows from (59), 
w1(qz) = a4. This means that, at the next step in evolution, w1 again gets to pole. However, 
one cannot determine the result of the evolution at this next step: the equations are satisfied by 
a generic w2(q

2z). This is just called the singularity confined. A reversed singularity pattern ap-
pears if one starts with w1(z) = a4 instead. Moreover, a similar consideration is applicable to 
zeroes of these equations. There are in total 8 such patterns, four of which are associated with 
singularities, and four others, with zeros. From these singularity patterns, one can deduce the 
bilinear representation of the q-Painlevè system [35].

In order to describe it, we define 8 functions τi(z) implicitly depending on the parameters 
of the q-Painlevè equation. These τ -functions are functions on the weight lattice of D(1)

5 with 
symmetries under the affine Weyl group [35] (see also [36]), and they are related to the functions 
w1,2(z) by the relations

w1(z) = z
τ1(qz)τ2(z)

τ3(qz)τ4(z)

w2(z) = z
b1a4

a2a3
· τ5(z)τ6(z)

τ7(z)τ8(z)

(64)

The described singularities are encoded in quadratic relations between the τ -functions equiv-
alent to the q-Painlevè system [37,35,38]. In the parametrization (62), they take the form:

zq2N−2τ1τ2 − q2α2τ3τ4 − τ7τ8 = 0

τ1τ2 − q1−2α3−2Nτ3τ4 − τ5τ6 = 0

τ̄1τ2 − q1−N τ̄3τ4 − q2N−2α12−2τ5τ̄6 = 0

zqN−1τ̄1τ2 − q2α2 τ̄3τ4 − τ̄7τ8 = 0

(65)

zτ̄1τ2 − q2−2N τ̄3τ4 − q−2α2τ7τ̄8 = 0

τ̄1τ2 − q1−2N−2α3 τ̄3τ4 − τ̄5τ6 = 0

τ̄1τ 2 − q1−N τ̄3τ 4 − q2N−2−2α12τ5τ6 = 0

zτ̄ τ − q2−N τ̄ τ − qN−2α2τ τ = 0

(66)
1 2 3 4 7 8

13
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where we denoted τ̄ = τ(qz) and τ = τ(q−1z). In fact, these eight τ -functions can be expressed 
through a single τ -function τ(α1, α2, α3, α4; z), which is a function of z and four parameters 
αi, i = 1 . . .4 with different τ -functions corresponding to certain shifts in the parameter space:

τ1 (α1, α2, α3, α4; z) = τ
(
α1 + 1

2 , α2, α3 + 1
2 , α4; z

)
τ2 (α1, α2, α3, α4; z) = τ

(
α1, α2 − 1

2 , α3, α4 + 1
2 ; z)

τ3 (α1, α2, α3, α4; z) = τ
(
α1, α2, α3 + 1

2 , α4 + 1
2 ; z)

τ4 (α1, α2, α3, α4; z) = τ
(
α1 + 1

2 , α2 − 1
2 , α3, α4; z

)
τ5 (α1, α2, α3, α4; z) = τ

(
α1 + 1

2 , α2, α3, α4 + 1
2 ; z)

τ6 (α1, α2, α3, α4; z) = τ
(
α1, α2 − 1

2 , α3 + 1
2 , α4; z

)
τ7 (α1, α2, α3, α4; z) = τ

(
α1 + 1

2 , α2 − 1
2 , α3 + 1

2 , α4 + 1
2 ; z)

τ8 (α1, α2, α3, α4; z) = τ (α1, α2, α3, α4; z)

(67)

The parameters are once again chosen to facilitate further representation of the τ -functions in 
terms of conformal blocks and the logarithmic model. Equations (65), (66) turn into bilinear 
difference equations for the function τ(α1, α2, α3, α4; z). These equations resemble the bilinear 
difference equations that we reviewed in section 3. We discuss these equations from this point of 
view for the rest of this section and later study their continuous limit.

From the discussion above, one should expect that, since the w2(z) function can be eliminated, 
the four τ -functions τ5,6,7,8 are, in a sense, also auxiliary. Moreover, one can express w2(z) from 
the first four τ -functions, similarly to w1(z): to this end, one can just use for this the first two 
equations of (65), or the last two equations of (66). However, eliminating the last four τ -functions 
would make the structure of remaining four equations far more involved and non-transparent.

Conformal block solves the q-Painlevè equation Having described the bilinear form of the q-
Painlevè equation, we are now ready to describe how the partition function of the logarithmic 
q-deformed matrix model provides the q-Painlevè τ -function. Recall the relation between the 
conformal parameters and the matrix integral:

α1 + α2 + α3 + α4 = −N. (68)

Then we can identify the two functions as follows:

τ (α1, α2, α3, α4; z) = z−2α1α2(z;q)−1
2α2α3

Z
(5d)
N (α1, α2, α3) (69)

This statement was first explored on the conformal side in [38]. In terms of the matrix model, 
the claim amounts to the partition function that satisfies relations (65), (66) With the relation 
between α4 and N , the left column of the τ -functions with odd indices corresponds to shift 
N → N − 1, hence the relations are in terms of quadratic combinations of the form ZNZN−1. 
In other words, solutions to the q-Painlevè VI equations are provided by the following ratios of 
partition functions:

w1(z) = qNz
Z

(5d)
N

(
α1 + 1

2 , qz
)
Z

(5d)
N−1

(
α2 − 1

2 , z
)

Z
(5d)
N

(
α3 + 1

2 , qz
)
Z

(5d)
N−1

(
α1 + 1

2 , α2 − 1
2 , z

)
w2(z) = q2α3+2N−1z

Z
(5d)
N

(
α1 + 1

2 , z
)
Z

(5d)
N−1

(
α2 − 1

2 , α3 + 1
2 , z

)
Z

(5d)
N

(
α1 + 1

2 , α2 − 1
2 , α3 + 1

2 , z
)
Z

(5d)
N−1 (z)

(70)

where we have listed only the variables that are shifted.
The bilinear equations (66), (65) are our main object of study. We treat them from the perspective 
14
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of the matrix model representation of Nekrasov functions. From the matrix model perspective, 
these equations have a distinguished meaning. In fact, they split into two sets of equations. By 
an explicit check, one can notice that equations (66) do not depend on the matrix model mea-
sure, which means they represent the Hirota equations, responsible for integrability of partition 
functions.

To see this, we look at the eigenvalue representation (39), and notice that it can be treated as 
a special case of the integral (26), with a special choice of Miwa variables:

(0,2α1) ,
(
zq−i ,1

)
, i = 0, . . . ,2α2 − 1,

(
q−i ,1

)
, i = 0, . . . ,2α3 − 1 (71)

and the integral substituted by the Jackson integral. The difference between the ordinary integra-
tion and the Jackson one is inessential for the Hirota equations, because, as we saw, their origins 
are identities of the integrand. In other words, one may think of the Jackson integral as a specific 
contour integral of a function with simple poles at points (71), while the choice of integration 
contour does not affect the Hirota equations.

However, the other equations (66) are measure dependent. For example, one can easily check 
that changing the integration measure in (53) as 

∏
i

dqxi → ∏
i

xidqxi simply shifts α1 → α1 +1/2

in the τ -functions. At the same time, we keep the parameter α1 in the coefficients of equations 
(66), (65) intact. Then, equation (65) still holds, while (66) do not.

If we started with the Hirota equations, we could conclude that the τ -function can be repre-
sented by an eigenvalue integral with an arbitrary measure. This would imply that the space of 
τ -functions is as large as the space of solutions of the whole (forced) Toda chain hierarchy. The 
role of the other four equations (66) is to fix the specific logarithmic measure: they represent a 
reduction of the KP hierarchy, specifically to solutions of the q-Painlevè equations.

In this sense, they are nothing but the Virasoro constraints. As we have discussed above, the 
bilinear form of the Virasoro constraints is a feature of the Miwa parametrization. Hence the 
system (66)+ (65) plays a role of the usual “integrability+string equation” pair in matrix models. 
We see that, in this case, the structure is not as transparent as usual, since the reduction requires 
rather complicated combinations of the Virasoro constraints. As we will see below, it seems this 
complication is not an issue of the q-deformation, in fact the q-deformed case seems to be the 
clearest one. It most likely that the lack of understanding of the Virasoro constraints in the Miwa 
parametrization is the source of the current problems.
As an example, let us illustrate how this works in the N = 1 case. Since Z0 = 1, the equations 
are effectively linear. In this case, some of the measure dependent equations simplify, and also 
become a corollary of integrability, and only the first equation of (66) remains independent. 
Hence, we take the first equations from (65) and (66):

zτ2 − q2α2τ4 − τ8 = 0

zτ2 − τ4 − q−2α2 τ̄8 = 0
(72)

Despite the striking similarity, we can easily see a different nature of these equations. Indeed, let 
us rewrite them in terms of the partition function, and make an overall shift α2 → α2 + 1/2 for 
convenience:

zZ
(5d)
1 (z) − q2α2+1Z

(5d)
1 (α1 + 1/2, z) − Z

(5d)
1 (α2 + 1/2, z) = 0

zZ
(5d)
1 (α2, z) − Z

(5d)
1 (α1 + 1/2, α2, z) − q−2α2−1Z

(5d)
1 (α2 + 1/2, qz) = 0

(73)

where we have written explicitly only the shifted multiplicities. Let us represent these equations 
in terms of the expectation value in the integral with intact parameters:
15
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〈
z − q2α2+1zx − z

(
1 − q2α2+1x

)〉
α1,α2,α3

= 0

〈z − zx〉α1,α2,α3
−

〈
z
(
q2α1(1 − zq−1x

)〉
α1,α2+1/2,α3−1/2

= 0
(74)

The first identity is a trivial identity that holds without any integration, hence it does not re-
quire fixing any specific measure. The second identity is, however, a consequence of the full 
q-derivative insertion:

0 =
∫

dqxDq

(
x2α1

(
x;q)2α2+1

)
(zx;q)−1

−2α3

)
(75)

Therefore, it is sensitive to changes in the measure. In this simple case, it is simple to identity the 
full-derivative insertion, explicitly showing how it is related to the “basic” Virasoro constraint. 
For generic N , the q derivative should also act on the full integrand as in (43). The equations 
(66) are analogues of the Virasoro equations (44) for the generalized q-Beta function, but now 
with 3 non-zero multiplicities.

Note that, in this case, the Virasoro constraints are difference equations in α but also in z, 
which puts them more on an equal footing. This is a natural property of q-hypergeometric func-
tions, which are components of the conformal block. For example, recall the Heine symmetry of 
the basic hypergeometric series:

2φ1(a, b; c;q, z) = (b;q)∞(az;q)∞
(c;q)∞(z;q)∞

2φ1(c/b, z;az;q, b) (76)

which mixes a, b, c and z.

5. q-Painlevè to Painlevè VI (5d to 4d) limit

Having described the different components in q-Painlevè theory, we proceed to describe the 
continuous limit of all of them.

5.1. Conformal block

The limit q-Virasoro to Virasoro for the conformal blocks themselves is just straightforward. 
As it follows from (52), the conformal block has the determinant representation

ZN (ξ1, ξ2) = z2α1α2(1 − z)2α2α3 · det
1≤i,j≤N

Mi+j−2 (77)

where

Mk = ξ1

z∫
0

x2α1+k(1 − x)2α2(z − x)2α3dx + ξ2

∞∫
1

x2α1+k(1 − x)2α2(z − x)2α3dx =

= ξ1z
2α12+k+1B (2α1 + k + 1,2α2 + 1) 2F1 (−2α3,2α1 + k + 1;2α12 + k + 2; z)+
+ξ2B (−2α123 − k − 1,2α3 + 1) 2F1 (−2α123 − k − 1,−2α2;−2α12 − k; z)

(78)

and B, 2F1 are the usual Beta-function and the hypergeometric function accordingly.
The Virasoro constraints (34) are appropriately modified, see, for example [21]. They involve 

additional z dependent terms and shifts of the α3 variable. Note that, in the continuous limit, the 
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multiplicity values αi and z are now less symmetric. For instance, the Virasoro constraints are 
difference equations in α and differential ones in z.

5.2. Painlevè VI equation

The famous result of [9] states that the conformal block solves the Painlevè VI equation. 
Unlike the q-deformed case, there are various different but equivalent forms of the equation that 
appear in the discussion. Let us start by collecting various forms of the equation relevant for our 
discussion.

The standard form for the Painlevè equations is the second order equation for a function w(z), 
resembling a Newton equation, hence we call it Newton form:

d2w

dz2 = 1

2

(
1

w
+ 1

w − 1
+ 1

w − z

)(
dw

dz

)2

−
(

1

z
+ 1

z − 1
+ 1

w − z

)
dw

dz
+

+ 2w(w − 1)(w − z)

z2(z − 1)2

((
θ∞ + 1

2

)2

− θ2
0 z

w2 + θ2
1 (z − 1)

(w − 1)2 +
( 1

4 − θ2
z

)
z(z − 1)

(w − z)2

)

(79)

It is also well-known that, for this equation, one can introduce a Hamiltonian HVI and momentum 
p(z), and obtain the Hamiltonian form:

dw

dz
= −w(w − 1)(w − z)

z(z − 1)

(
2p − 2θ0

w
− 2

2θ1

w − 1
− 2θz − 1

w − z

)
= ∂HVI

∂p
(80)

Finally, if one starts with the problem of isomonodromic deformations of the Shlesinger systems, 
one obtains the Painlevè equation in the so-called σ -form:

(
z(z − 1)σ ′′)2 = −2 det

⎛
⎝ 2θ2

1 zσ ′ − σ σ ′ + θ2
1 + θ2

2 + θ2
3 − θ2

4
zσ ′ − σ 2θ2

2 (z − 1)σ ′ − σ

σ ′ + θ2
1 + θ2

2 + θ2
3 − θ2

4 (z − 1)σ ′ − σ 2θ2
3

⎞
⎠

(81)

The relation between these presentations is cumbersome but known and given by the following 
relations [9]. The variable σ is related to the Hamiltonian variables as

σ =z(z − 1)HVI − w(w − 1)p + (θ0 + θz + θ1 + θ∞)w−

− (θ0 + θ1)
2 z + θ2

1 + θ2∞ − θ2
0 − θ2

z − 4θ0θz

2

(82)

and to the Newtonian form:

1

w − z
+ 1

2

(
1

z
+ 1

z − 1

)
=

=2θ∞z(z − 1)σ ′′ + (
σ ′ + θ2

z − θ2∞
) (

(2z − 1)σ ′ − 2σ + θ2
0 − θ2

1

) + 4θ2∞
(
θ2

0 − θ2
1

)
2z(z − 1)

(
σ ′ + (θt − θ∞)2) (

σ ′ + (θt + θ∞)2)
(83)

Conformal block solves the Painlevè VI equation There is also another, bilinear form of the 
Painlevè equation: if one makes the change of variables to a Painlevè τ -function,
17
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σ(z) = z(z − 1)
d log τVI

dz
(84)

the Painlevè VI equation can be written in the form [39]:

DVI
(
τVI · τVI

)
= 0 (85)

DVI = −1

2
(1 − z)3D4

log z + . . . (86)

where D is the standard Hirota derivative operator defined as

Dk
hf (x) · g(x) =

(
∂k

∂hk
f (x + h)g(x − h)

)∣∣∣∣
h=0

(87)

In such a form, it is a rather cumbersome equation of order 4 in the Hirota operators.
Now we can formulate the relation between the 4d matrix model partition function (47) and 

the Painlevè VI equation: the partition function is just the Painlevè τ -function [20]

Z
(4d)
N = τVI (88)

or

σ(z) = z(z − 1)
d logZ

(4d)
N

dz
(89)

with parameters of the equation related to the operator dimensions by

θ0 = α1 , θz = α2 , θ1 = α4 , θ∞ = α4 (90)

There are different ways to see that (89) satisfies (81). By setting N = 0, one checks that the 
prefactor Z0 = z2α1α2(1 − z)2α2α3 satisfies the equation. For nonzero N , the partition functions 
are given by the non-perturbative prefactor times a power series in z, and one checks order by 
order that the coefficients of the z expansion of ZN satisfy the equation.
Looking at the bilinear equation (86) from a matrix model perspective, we see that this equation 
does depend on changing the measure, hence we should treat it some combination of Virasoro 
constraints. In such formulation, it may seem that this is a single bilinear equation equivalent 
to the Painlevè equation. However, it turns out not to be the case. To make a connection with 
the next section, we note that generally the Painlevè equations can be written as bilinear equa-
tions in many different ways. The one described above uses one single τ -function. However, 
one could introduce multiple τ -functions related by Bäcklund transformation [40], just as in the 
q-deformed case.

For an illustration, look at the simpler Painlevè III equation. The bilinear form of the equation, 
using a single τ -function is given by the operator

DIII = 1

2
D4

log z − z
d

dz
D2

log z + 1

2
D2

log z + 2zD0
log z : DIII

(
τ III · τ III

)
= 0 (91)

Now if one introduces τ1(z) related to τ(z) by a Bäcklund transformation, one obtains the fol-
lowing form of the equation:

D2
log zτ

III · τ III = −2z1/2
(
τ III

1

)2

D2
log zτ

III
1 · τ III

1 = −2z1/2
(
τ III

)2
(92)
18
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The corresponding variable w(z) which solves the Newtonian form of the Painlevè III equation 
is

wIII(z) = z1/2

(
τ III

)2

(
τ III

1

)2 (93)

We discuss a similar representation of the Painlevè VI equation below, which uses 8 τ -functions 
and is a continuous limit of (65)-(66).

Continuous limit of the q-Painlevè VI equation Since the limit of the q-Virasoro conformal 
block is straightforward, we expect this limit to hold for all structures: the solution and the defin-
ing 8 equations. Surprisingly, we will see that the limiting procedure is not quite obvious and its 
relation with solution (89) is not that explicit.
We have described above how the q-Painlevè VI equations are solved by the ratios of shifted 
τ -functions, and one should expect that taking the continuous limit would provide a solution to 
the Painlevè VI equation. The limit of the q-Painlevè equations (59)-(60) themselves is rather 
tricky [33]. The procedure of taking the limit requires, first, defining the Hamiltonian variables 
w(z), p(z) by the following limiting procedure:

w(z) = w1(z),
(w1 − a1z) (w1 − a2z)

(w1 − z) (w1 − 1)

1

qw2
= 1 − εw1p(z) (94)

and then expanding the parameters a1 = 1 +εa1, b1 = 1 +εb1, q → 1 +ε. This reparametrization 
allows one to exclude w2(z) and hence to rewrite the q-Painlevè system in terms of w(z), p(z). 
In the first order in ε, one ends up with the Hamiltonian form of the Painlevè VI equation:

dw

dz
= ∂HVI

∂p
,

dp

dz
= −∂HVI

∂w
(95)

The Hamiltonian form is not easy to deal with, since the p(z) function is quite complicated. 
Nevertheless, we expect the function w(z) to solve the Newtonian form of the equation.

We can clearly do this with the solution given by (64). Taking the limit in terms of the τ -
functions, we obtain the function

w(z) := lim
q→1

w1(z) = z
τ̂1τ̂2

τ̂3τ̂4
(96)

where τ̂i (z) = lim
q→1

τi(q, z), which should be a solution to the Painlevè VI equation in the New-

tonian form.
The parameters of the obtained equation are of course related to the multiplicities αi . Inter-

estingly enough, we get the Painlevè equation with parameters differing from those in (90). For 
the solution obtained in the limit, we have:

θ1 = 1 − N − 2α2

2
, θt = −N − 2α3

2

θ0 = −2α1 − 2α2 − 2α3 − N

2
θ∞ + 1

2
= N + 2α1

2

(97)

These relations between the parameters of solutions differ from (90). Therefore, in order to make 
a connection between the two representations, one should take the τ -function form with the 
Bäcklund transformed parameters:
19
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σ̃ (z) = z(z − 1)

d logZ

(
−α1 − α2 − α3 − N/2,−N/2 − α3,

1 − N

2
− α2

)
dz

(98)

Then [41]:

σ̃ (z) = z2(z − 1)2

4w(w − 1)(w − z)

(
w′ − w(w − 1)

z(z − 1)

)2

− θ2
0 z

w
+ θ2

1 (z − 1)

(w − 1)
− θ2

z z(z − 1)

(w − z)

− θ2∞(w − 1 + z)

(99)

with w(z) given by formula (96) and parameters given by (97). Equivalently, one could use 
formula (83) to invert the transformation.

5.3. Continuous limit of the 8 bilinear equations

One may also ask what is a continuum limit of the bilinear representation of the q-Painlevè 
system. An answer is given in [42], which we review here more carefully. Just as the limit of 
(59)-(60), it is not actually straightforward: one needs a special limiting procedure. Note that 
the parameter q appears in the τ -functions in two ways: as a parameter of the function and in 
difference shifts of the z-variable. We take a coarse continuous limit in the parameters of the 
τ -functions, while keeping track of the q-dependence in the shifts:

τ(q, qaz) → τ̂ (eaεz) = lim
q→1

τ(q, eaεz) for q → exp(ε) (100)

To give an example, look at the N = 1 case. The natural q → 1 limit would look like:

Z
(5d)
1 (α1, α2, α3, z) = Z

(4d)
1 (α1, α2, α3, z)+

+ ε
(
(α1 + α2 + 2α1α2)Z

(4d)
1 (α1, α2, α3, z)−

− (α2 + α3 + 1)2α3Z
(4d)
1 (α1 + 1/2, α2, α3 − 1/2, z)

)
Z

(5d)
1 (α1, α2, α3, qz) = Z

(4d)
1 (α1, α2, α3, z)+

+ ε
(
(α1 + α2 + 2α1α2)Z

(4d)
1 (α1, α2, α3, z)−

− (α2 + α3 + 1)2α3Z
(4d)
1 (α1 + 1/2, α2, α3 − 1/2, z) + z

d

dz
Z

(4d)
1 (α1, α2, α3, z)

)
(101)

Instead, we make the following substitutions:

Z
(5d)
1 (α1, α2, α3, z) −→ Z

(4d)
1 (α1, α2, α3, z)

Z
(5d)
1 (α1, α2, α3, qz) −→ Z

(4d)
1 (α1, α2, α3, z) + ε z

d

dz
Z

(4d)
1 (α1, α2, α3, z)

(102)

The limit in [42] also involves expanding the coefficients ai, bi only to a certain order in ε, 
whereas it is unclear how to proceed with this method in our case, where the coefficients are 
explicit functions in q .

Thus, now we substitute (100), (102) into the bilinear equations (65), (66) and expand them 
in ε up to the second order. However, only 8 of the resulting 8 · 3 equations correctly hold, and 
we just keep only them. Finally, we obtain a set of equations analogous to those in [42]:
20
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ε0 : zτ̂1τ̂2 − zτ̂5τ̂6 − zτ̂3τ̂4 = 0 (103)

τ̂3τ̂4 + τ̂7τ̂8 − zτ̂1τ̂2 = 0 (104)

ε1 : (n − 1 + 2α2)τ̂3τ̂4 + (
1 − n + 2α2 + Dlog z

)
τ̂7τ̂8 = 0 (105)

(n + 2α3)τ̂1τ̂2 + (−2α1 − 2α2 − 2α3 + n − 2 − Dlog z

)
τ̂5τ̂6 = 0 (106)

(2α1 + n)τ7τ8 + (−2α2 − 2α3 + (1 − z) (2 + 2α1 + 2α2 + 2α3 − n)+
+ (1 − z)Dlog z

)
τ̂3τ̂4 = 0 (107)

(−2α1 − 2α2 − 2α3 − n)τ̂5τ̂6 + (
2α3 + 3n − 2 + z(2 + 2α2 − 3n)−

− z(1 − z)Dlog z

)
τ̂1τ̂2 = 0 (108)

ε2 : τ̂1τ̂2ψ12 (�α,N, z) + τ̂7τ̂8ψ78 (�α,N, z) =
= −(1 − z)2D2

log zτ̂3τ̂4 − (1 − z)zD2
log zτ̂5τ̂6 + (1 − z)D2

log zτ̂7τ̂8 (109)

τ̂3τ̂4ψ34 (�α,N, z) + τ̂5τ̂6ψ56 (�α,N, z) =
= −(1 − z)2D2

log zτ̂1τ̂2 − (1 − z)zD2
log zτ̂5τ̂6 + (1 − z)D2

log zτ̂7τ̂8 (110)

Here ψij (�α,N, z) are quadratic polynomials in all the variables. They are rather complicated 
and are ambiguously determined because of relations (103), (104). These bilinear equations are 
another bilinear form of the Painlevè VI equation. Instead of a single equation of order 4, one 
has a system of lower order equations for 8 τ -functions.

These bilinear equations are equivalent to the Newtonian form of the Painlevè VI equation for 
the function

w(z) = z
τ̂1τ̂2

τ̂3τ̂4
(111)

Note that, due to equations (103), (104), various representations of w(z) are allowed, for exam-

ple: w(z) = 1 + τ̂7τ̂8

τ̂3τ̂4
.

Now looking at these equations from the point of view of the eigenvalue integral, one can 
again distinguish between those equations that depend on the measure μ(x) and those which do 
not. The first two equations (103)-(104) are certainly nothing but the Hirota equations (28).

As in the q-deformed case, we expect that in total we have four equations that we attribute to 
integrability. The missing two are constructed as linear combinations, and we obtain:

zτ̂1τ̂2 − zτ̂5τ̂6 − zτ̂3τ̂4 = 0

τ̂3τ̂4 + τ̂7τ̂8 − zτ̂1τ̂2 = 0

(105) + (106) − (108) = (2n − 1)τ̂1τ̂2 + (1 − z)Dlog zτ̂1τ̂2 − zDlog zτ̂5τ̂6 − Dlog zτ̂7τ̂8 = 0

(105) + z(106) − (107) = −zτ̂1τ̂2 + (1 − z)Dlog zτ̂3τ̂4 − zDlog zτ̂5τ̂6 + Dlog zτ̂7τ̂8 = 0

(112)

The other four equations are consequence of Virasoro-like constraints. It is not clear how to 
generally identify the full derivative insertions that correspond to these equations. One can do it 
in particular cases like, for example, for N = 2. However, these explicit expressions are not too 
illuminating, and we will not provide them here.

All in all, we see that the structure behind the relation between the Painlevè equation and the 
integrability+string equations survives the continuous limit. While now it is made complicated 
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by distinct forms of the PVI equations and by the peculiarities of the continuous limit. In fact, one 
gives a slightly different interpretation of equations (65)-(66) as a consistency condition between 
representation (111) and (89). Formula (83) is then equivalent (up to Bäcklund transformations) 
to the system of 8 bilinear equations.

Finally, notice that the naive substitution of q = 1 into the q-Painlevè equations leads to:

w2
1 =

(
w2 − z

w2 − 1

)2

w2
2 =

(
w1 − z

w1 − 1

)2
(113)

which are consistent with the equations (103), (104), for example, the second one is rewritten as:

w2 = w1 − z

w1 − 1
=⇒ z

τ̂5τ̂6

τ̂7τ̂8
= τ̂1τ̂2 − zτ̂3τ̂4

τ̂1τ̂2 − τ̂3τ̂4
(114)

6. Pure gauge theory limit

6.1. The Painlevè III equation

It appears that the described properties persist in the pure gauge limit of the AGT corre-
spondence in 4d . In this limit, the Nekrasov partition functions and the conformal blocks are 
described by the Brezín-Gross-Witten (BGW) matrix model. On the gauge theory side, one has 
an N = 2 pure gauge theory, which is no longer conformal. The masses of hypermultiplets are 
set to infinity, and a scale parameter � emerging due to renormalizations is introduced. In terms 
of parameters of the conformal block (which is called irregular conformal block in this limit 
[43]), this limit is given by

αi → 0, z → ∞
(α2

1 − α2
2)(α2

3 − α2
4)z - fixed

(115)

The pure gauge limit corresponds to the reduction from the Painlevè VI to Painlevè III′3 equation. 
It is clear that after the limit is taken there are no parameters left in the equation. Just as the 
Painlevè VI equation, it has several forms (we suppress the label III for a moment). In particular, 
the Newtonian form is given by

d2w

dz2 = 1

w

(
dw

dz

)2

− 1

z

dw

dz
+ 2w2

z2 − 2

z
(116)

while the σ -form is(
zσ ′′)2 = 4

(
σ ′)2 (

σ − zσ ′) − 4σ ′ (117)

We have already presented the bilinear forms of the equation (91) and (92), the second one uses 
two τ -functions related by the Bäcklund transformation

D2
log zτ

2 = −2z1/2τ 2
1 (118)

Transformations between different representations are rather simple in this case:

wIII = − 1

(σ III)′
, wIII(z) = z1/2 τ 2

2 , σ III = z
d log τ III

z
(119)
τ1
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In fact, it is rather easy to see consistency between the Painlevè equations and the transformation 
formulas (119). For instance, substituting expressions for σ and w into the first identity in (119), 
one immediately obtains the bilinear equation (118).

Various objects of the Painlevè VI theory have specific scaling properties in the pure gauge 
limit. The scaling of the Painlevè VI variables to the Painlevè III ones is given by:

• Newtonian variable:

wIII(z) = lim
αi→0

[
z(α2

1 − α2
2)

(α3 + α3)
· wVI

(
z

(α2
1 − α2)(α4

3 − α2
4)

)]
(120)

• τ -function:

τ III = lim
αi→0

[(
z

(α3 + α4)

)α2
1+α2

2 · τVI

(
z

(α2
1 − α2)(α4

3 − α2
4)

)]
(121)

The scaling properties of the eight τ -functions are not evident because of the shift structure. 
We propose an answer from analyzing the matrix model representation in the next subsection.

6.2. PGL conformal block as BGW matrix model

In the pure gauge limit, the conformal block is given by BGW integrals as follows. Con-
sider the BGW partition function [44] given by the integral over unitary N × N matrix U and 
depending on the external matrix �:

ZBGW(N | �) = 1

VolN

∫
[dU ]e

(
TrU†+Tr�U

)
(122)

and define the partition function, which is a matrix model realization of the irregular conformal 
block corresponding to the Nekrasov functions in pure gauge theory (with dimensional parameter 
z = �4, since the gauge theory is no longer conformal) [23,20]:

Z(1)∗ (N, z) =
∫

[dU ]
∫

[dV ]ZBGW (m+ | U)ZBGW (m− | V )det
(

1 − zU† ⊗ V †
)2 =

=
∑
R,Q

(−�4)|R|δ|R|,|Q| · KRQ · d2
Rd2

Q

D
R
(m+)D

Q
(m−)

(123)

where

KRQ =
∑
X,Y

NR
X,YN

Q

Xtr ,Y tr (124)

and NR
PQ are the Littlewood-Richardson coefficients, DR(m) is the dimension of representation 

R of group SL(m), dR is the dimension of representation R of symmetric group S|R| [45]. The 
partition function (123) depends on sizes of matrices U and V , which are chosen to be m+ = N

and (analytically continued) m− = −N .
As in the previous cases, the integrability properties and the relation to the Painlevè equation 

is revealed after the Fourier transform:
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ZPGL (a, z) =
∑
k∈Z

Z(a + k, z)eikη, Z(a, z) = za2
Z

(1)∗ (2a, z)

G(1 + 2a)G(1 − 2a)
(125)

where G(x) is the Barnes G-function [46], and we have chosen this normalization so that 
ZPGL (a, z) would be equal to the τ -functions of the Painlevè III equation with respect to the 
variable z, while the Bäcklund transformed τ -function in (118) is given by a shift in the a pa-
rameter:

τ III = ZPGL (a, z) , τ III
1 = ZPGL

(
a + 1

2
, z

)
(126)

One can understand this shift as a remnant from the Painlevè VI τ -functions as follows. The 
parameter a is the internal dimension in the conformal block, i.e. it is a remnant of α in the pure 
gauge limit, for which we remind the relation: N1 = α +α1 +α2 N2 = −α +α3 +α4. The shifts 
of αi parameters in the 8 τ̂i functions are suited so that, for i = 1, 2, 7, 8, they can be thought of 
as effectively shifting α → α + 1

2 .
As these formulas suggest, the scaling limit from the 8 Painlevè VI τ functions to the Painlevè 

III τ -functions sends:

τ̂i −→
{

τ III , i = 3,4,5,6

τ III
1 , i = 1,2,7,8

(127)

Just as in the previous case, there are various forms of the Painlevè III equation in terms of the 
PGL conformal blocks:

σ III(z) = z
d

dz
ZPGL (a, z) , wIII(z) = z1/2 ZPGL (a, z)2

ZPGL

(
a + 1

2
, z

)2 (128)

Painlevè III as a reduction of the Toda equation The BGW description of the PGL conformal 
block implies that it satisfies the Toda system:

D2
log zZPGL(a, z) · ZPGL(a, z) = −2z1/2ZPGL(a − 1/2, z)ZPGL(a + 1/2, z) (129)

with n = 2a playing the role of the discrete Toda time. However, due to the structure of (125), it 
obeys the periodicity condition

ZPGL(a + 1, z) = ZPGL(a, z) (130)

This condition plays the role of a reduction constraint that reduces the Toda equations to the 
Painlevè III equation, which acquires the bilinear form (118):

D2
log zZPGL(a, z) = −2z1/2ZPGL(a + 1/2, z)2 (131)

7. Discussion

To conclude, we provided a detailed description of the relation between conformal blocks 
realized in terms of matrix models and the Painlevè τ -functions (see [47] for a different relation 
of q-Painlevè with matrix models, see also [48]). We gave a uniform presentation of both the 
q-deformed case (5d theories) and the non-deformed one (4d theories). We explained how the 
relevant limit q −→ 1 is taken and how the set of 8 Painlevè τ -functions gets split into Hirota 
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bilinear identities for the ordinary KP τ -functions and Virasoro-like constraints, the two basic 
ingredients of the standard theory of (eigenvalue) matrix models [12].

What remains to be done besides a further work on clarification of above ideas is to under-
stand a relation of Painlevè theory to the modern view on eigenvalue matrix models based on the 
phenomenon of superintegrability (see [13] and references therein). At least for fixed integration 
contours, one could use the integrable structure and the string equation to convert all equation into 
pure algebraic/combinatoric ones and solve them for obtaining an explicit answer. An even more 
straightforward way of solving the Virasoro constraints using the so-called W -representation is 
now under development [49–52,27,28]. Superintegrability is effectively applied [14] to logarith-
mic matrix models which we considered in this paper. We hope that these problems will attract 
attention of the community, and plan to return to them elsewhere.
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