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TRIVIAL EXTENSIONS OF SEMIGROUPS

AND SEMIGROUP 𝐶*
-ALGEBRAS

E.V. LIPACHEVA

Abstract. The object of the study in the paper is reduced semigroup 𝐶*-algebras for left
cancellative semigroups. Such algebras are a very natural object because it is generated
by isometric shift operators belonging to the image of the left regular representation of
a left cancellative semigroup. These operators act in the Hilbert space consisting of all
square summable complex-valued functions defined on a semigroup. We study the ques-
tion on functoriality of involutive homomorphisms of semigroup 𝐶*-algebras, that is, the
existence of the canonical embedding of semigroup 𝐶*-algebras induced by an embedding
of corresponding semigroups. In order to do this, we investigate the reduced semigroup
𝐶*-algebras associated with semigroups involved in constructing normal extensions of semi-
groups by groups. At the same time, in the paper we consider one of the simplest classes of
extensions, namely, the class of so-called trivial extensions. It is shown that if a semigroup
𝐿 is a trivial extension of the semigroup 𝑆 by means of a group 𝐺, then there exists the
embedding of the reduced semigroup 𝐶*-algebra 𝐶*

𝑟 (𝑆) into the 𝐶
*-algebra 𝐶*

𝑟 (𝐿) which is
induced by an embedding of the semigroup 𝑆 into the semigroup 𝐿.

In the work we also introduce and study the structure of a Banach 𝐶*
𝑟 (𝑆)-module on

the underlying space of the reduced semigroup 𝐶*-algebra 𝐶*
𝑟 (𝐿). To do this, we use

a topological grading for the 𝐶*-algebra 𝐶*
𝑟 (𝐿) over the group 𝐺. In the case when a

semigroup 𝐿 is a trivial extension of a semigroup 𝑆 by means of a finite group, we prove the
existence of the structure of a free Banach module over the reduced semigroup 𝐶*-algebra
𝐶*
𝑟 (𝑆) on the underlying Banach space of the semigroup 𝐶*-algebra 𝐶*

𝑟 (𝐿).
We give examples of extensions of semigroups and reduced semigroup 𝐶*-algebras for a

more complete characterization of the issues under consideration and for revealing connec-
tions with previous results.

Keywords: cancellative semigroup, normal extension of a semigroup, trivial extension of
a semigroup, reduced semigroup 𝐶*-algebra, embedding a semigroup 𝐶*-algebra, Banach
module, free module.
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Introduction

The paper is devoted to studying normal extensions of semigroups with cancellation and
corresponding semigroup 𝐶*-algebras.
The reduced semigroup 𝐶*-algebra are operator algebras generated by left regular repre-

sentations of semigroups with cancellation. First such algebras were studied in works by
Coburn [1], [2] and Douglas [3]. They considered reduced semigroup 𝐶*-algebras for semi-
groups being positive cones of ordered semigroups in an additive group of all real numbers. A
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further studying of these algebras were made in works by Murphy [4], [5], Nica [6], Laca and
Raeburn [7], Li [8] and others.
The present work is a continuation of the studies of reduced semigroup 𝐶*-algebras initi-

ated in [9]– [13]. We consider semigroup 𝐶*-algebras corresponding to semigroups involved in
constructing the extensions of the semigroups.
The theory of semigroup extensions plays an important role in studying the structures and

characteristics of semigroups, in particular, of their cohomologies, see, for instance, [14]. In
studies on semigroups, various types of extensions are considered: ideal extensions, [15], Schreier
extensions [16], normal extensions [17], [18]. In [19] there was studied the action of the functor
of Stone-Čech compactification on normal extensions of semigroups.
This paper is aimed on finding the relations between the extensions of the semigroups and

corresponding semigroup 𝐶*-algebras and completes the studies made in works [20]– [22]. We
consider one of the simplest types of normal extensions, namely, trivial extensions. If 𝐿 is a
trivial extensions of 𝑆 be means of a finite group, then the underlaying space of 𝐶*-algebra
𝐶*
𝑟 (𝐿) can be equipped with the structure of a free Banach module over the 𝐶*-algebra 𝐶*

𝑟 (𝑆).
While proving this fact, we use a topological grading of 𝐶*-algebra 𝐶*

𝑟 (𝐿), the construction of
which was described in [12]. We recall that the notion of a topologically graded 𝐶*-algebra was
introduced by Exel [23] in order to extend notions of harmonic analysis on a non-commutative
case.
The paper consists of the Introduction and three sections. In Section 1 we recall needed facts

from the theory of semigroup extensions, theory of semigroup 𝐶*-algebras and Banach modules.
Section 2 is devoted to the question on functoriality of morphisms of semigroup 𝐶*-algebras,
which raised in a general form in work [8] and was studied in [22] for reduced semigroup 𝐶*-
algebras constructed by semigroups, one of which is a normal extension of another. In Section 3
on the underlaying space of the 𝐶*-algebra 𝐶*

𝑟 (𝐿), we introduce and study the structure of
Banach 𝐶*

𝑟 (𝑆)-module under the conditions that the semigroup 𝐿 is a trivial extension of 𝑆 by
means of the group.

1. Preliminaries

Let 𝑆 and 𝐿 be discrete semigroups with a left cancellation and 𝐺 be a group with a unit 𝑒.
Assume we are given an injective homomorphism of semigroups 𝜏 : 𝑆 −→ 𝐿 and a surjective
semigroup homomorphism 𝜎 : 𝐿 −→ 𝐺. The triple (𝐿, 𝜏, 𝜎) is called a normal extension of the
semigroup 𝑆 by means of the group 𝐺 if 𝜏(𝑆) is the total preimage of the unit 𝑒 under 𝜎, that
is,

𝜎−1(𝑒) = 𝜏(𝑆).

The semigroup 𝐿 is also sometimes called an extension of the semigroup 𝑆 by means of the
group 𝐺. General definitions of the extensions of semigroups can be found in [17], [24].
Let a set 𝑋 be such that 𝑋 ⊂ 𝐿 ∖ 𝜏(𝑆) and 𝑋 ∩ 𝜎−1(𝑔) = {𝑥𝑔} for each 𝑔 ∈ 𝐺, 𝑔 ̸= 𝑒.

We shall say that an extension (𝐿, 𝜏, 𝜎) of the semigroup 𝑆 is generated by the set 𝑋 if each
element 𝑦 ∈ 𝐿 ∖ 𝜏(𝑆) is uniquely represented as 𝑦 = 𝜏(𝑎)𝑥𝑔 for some 𝑎 ∈ 𝑆 and 𝑔 ∈ 𝐺. In this
case each subset 𝜎−1(𝑔), 𝑔 ̸= 𝑒, reads as

𝜎−1(𝑔) = 𝜏(𝑆)𝑥𝑔 := {𝜏(𝑎)𝑥𝑔 | 𝑎 ∈ 𝑆}.

We note that the extensions possessing generating sets are Schreier extensions, see [14].
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Two extensions (𝐿, 𝜏, 𝜎) and (𝐿′, 𝜏 ′, 𝜎′) of the semigroup 𝑆 by means of the group 𝐺 are called
equivalent if there exists an isomorphism of semigroups 𝜓 : 𝐿 −→ 𝐿′ making the giagram

𝐿

𝜓

��

𝜎

  
𝑆

𝜏 ′ ��

𝜏
??

𝐺

𝐿′
𝜎′

>>

commutative.
We consider the Cartesian product 𝑆 × 𝐺 of the semigroup 𝑆 and the group 𝐺. This is a

semigroup with the multiplication operation

(𝑎, 𝑔) · (𝑏, ℎ) = (𝑎𝑏, 𝑔ℎ), (1.1)

where 𝑎, 𝑏 ∈ 𝑆, 𝑔, ℎ ∈ 𝐺. An extension of form (𝑆×𝐺, 𝜏, 𝜎), where 𝜏(𝑎) = (𝑎, 𝑒) and 𝜎(𝑎, 𝑔) = 𝑔
for all 𝑎 ∈ 𝑆, 𝑔 ∈ 𝐺, or any equivalent to it is called trivial extension of the semigroup 𝑆 by
means of the group 𝐺.
Let us recall the definition of the reduced semigroup 𝐶*-algebra. Let 𝑃 be a discrete semi-

group with a left cancellation. We introduce a Hilbert space on this semigroup: this is the
space 𝑙2(𝑃 ) of square integrable complex-valued functions on 𝑃 . We denote by 𝑒𝑝, 𝑝 ∈ 𝑃 , the
function of the space 𝑙2(𝑃 ) defined by the formula

𝑒𝑝(𝑞) :=

{︃
1, if 𝑝 = 𝑞 ;

0, if 𝑝 ̸= 𝑞 ,

where 𝑞 ∈ 𝑃 . Then the set of the functions {𝑒𝑝 | 𝑝 ∈ 𝑃} is an orthonormalized basis in the
Hilbert space 𝑙2(𝑃 ).
In the algebra of all bounded linear operators 𝐵(𝑙2(𝑃 )) on the space 𝑙2(𝑃 ) we consider 𝐶*-

subalgebra 𝐶*
𝑟 (𝑃 ) generated by the set of isometries {𝑇𝑝 | 𝑝 ∈ 𝑃}, where 𝑇𝑝(𝑒𝑞) = 𝑒𝑝𝑞, 𝑝, 𝑞 ∈ 𝑃 .

It is called a reduced semigroup 𝐶*-algebra. The unit element of this algebra is denoted by 𝐼.
If 𝑃 = N is an additive semigroup of natural numbers, then the reduced semigroup 𝐶*-algebra

𝐶*
𝑟 (N) is called a Toeplitz algebra and is denoted by the symbol 𝒯 .
We are going to describe a dense subalgebra in the 𝐶*-algebra 𝐶*

𝑟 (𝑃 ). For each element
𝑝 ∈ 𝑃 we consider the symbols 𝑇−1

𝑝 and 𝑇 1
𝑝 . We denote by ℱ(𝑃 ) a free semigroup of words

formed by the letters in the alphabet {𝑇−1
𝑝 , 𝑇 1

𝑝 | 𝑝 ∈ 𝑃}. The semigroup ℱ(𝑃 ) is an involutive
semigroup. An arbitrary element of this semigroup is a word (monomial) of form

𝑉𝑝 := 𝑇 𝑖1𝑝1𝑇
𝑖2
𝑝2
. . . 𝑇 𝑖𝑘𝑝𝑘 , (1.2)

where 𝑝 = (𝑝1, . . . , 𝑝𝑘) is an element of a 𝑘-multiple Cartesian product 𝑃×𝑘 := 𝑃 × . . . × 𝑃 ,
𝑖1, . . . , 𝑖𝑘 ∈ {−1, 1}, 𝑘 ∈ N. The number 𝑘 in writing (1.2) is called a length of the monomial.
The involution operation on the semigroup ℱ(𝑃 ) is defined by the formula

𝑉 *
𝑝 = 𝑇−𝑖𝑘

𝑝𝑘
𝑇−𝑖𝑘−1
𝑝𝑘−1

. . . 𝑇−𝑖1
𝑝1

.

Each monomial 𝑉𝑝 defines a bounded linear operator ̂︀𝑉𝑝 on the Hilbert space 𝑙2(𝑃 ) as follows:̂︀𝑇 1
𝑝 := 𝑇𝑝, ̂︀𝑇−1

𝑝 := 𝑇 *
𝑝 ,

and for each monomial 𝑉𝑝 of form (1.2) we let̂︀𝑉𝑝 := ̂︀𝑇 𝑖1𝑝1 ̂︀𝑇 𝑖2𝑝2 . . . ̂︀𝑇 𝑖𝑘𝑝𝑘 . (1.3)

We call ̂︀𝑉𝑝 an operator monomial.
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Finite linear combinations of operators (1.3)

𝐴 =
𝑚∑︁
𝑖=1

𝛼𝑖̂︀𝑉𝑝𝑖 (1.4)

form a dense involutive subalgebra in the 𝐶*-algebra 𝐶*
𝑟 (𝑃 ), which we denote by 𝒫(𝑃 ).

In what follows we recall necessary definitions from book [25] related with modules. By
module we mean a left module.
Let A be a unital 𝐶*-algebra. A module M over the 𝐶*-algebra A is called Banach A-module

if it is a Banach space with the norm satisfying the inequality: ‖𝐴 ·𝑀‖ 6 ‖𝐴‖‖𝑀‖, where
𝐴 ∈ A, 𝑀 ∈ M.
An element 𝑀 in a Banach A-module M is called cyclic if the identity holds:

M = A ·𝑀 := {𝐴 ·𝑀 | 𝐴 ∈ A}.

A Banach module possessing a cyclic element is called a cyclic module.
Let 𝐸 be a Banach space. On a projective tensor product Â︀⊗𝐸 there exists a structure of a

unital left Banach A-module, which is uniquely defined by the formula

𝐴 · (𝐵 ⊗𝑋) = 𝐴𝐵 ⊗𝑋, 𝐴,𝐵 ∈ A, 𝑋 ∈ 𝐸.

A Banach module is called a free unital Banach A-module if it is topologically isomorphic to
the module Â︀⊗𝐸 for some Banach space 𝐸. For instance, the 𝐶*-algebra A itself is a free unital
Banach A-module. Also a Banach direct 𝑙1-sum of 𝑛 copies of the module A is a free Banach
A-module since there is a topological isomoprphism of unital Banach A-modules⨁︁

1

A ∼= Â︀⊗C𝑛.
2. Embeddings of semigroup 𝐶*

-algebras induced

by trivial extensions of semigroups

In this sections we enlarge the results obtained in work [22] on embeddings of 𝐶*-algebras
corresponding to semigroups forming normal extension of semigroups.

Theorem 2.1. Let 𝑆 be a semigroup with a left cancellation and (𝐿, 𝜏, 𝜎) be a trivial ex-
tension of the semigroup 𝑆 by means of a group 𝐺. Then there exists a unique isometric
*-homomorphism 𝜙 : 𝐶*

𝑟 (𝑆) −→ 𝐶*
𝑟 (𝐿) such that 𝜙(𝑇𝑎) = 𝑇𝜏(𝑎).

Proof. Since (𝐿, 𝜏, 𝜎) is a trivial extension, then up to an isomorphism of semigroups we have
the identity

𝐿 = 𝑆 ×𝐺.

At the same time 𝜏(𝑎) = (𝑎, 𝑒) and 𝜎(𝑎, 𝑔) = 𝑔 for all 𝑎 ∈ 𝑆, 𝑔 ∈ 𝐺.
There exists a canonical isomorphism of 𝐶*-algebras [8, Lm. 2.16]:

𝜓 : 𝐶*
𝑟 (𝑆 ×𝐺) −→ 𝐶*

𝑟 (𝑆)⊗min 𝐶
*
𝑟 (𝐺) : 𝑇(𝑎,𝑔) ↦→ 𝑇𝑎 ⊗ 𝑇𝑔.

We define a mapping

𝜃 : 𝐶*
𝑟 (𝑆) −→ 𝐶*

𝑟 (𝑆)⊗min 𝐶
*
𝑟 (𝐺) : 𝐴 ↦→ 𝐴⊗ 𝐼.

It is obvious that 𝜃 is an injective *-homomorphism of 𝐶*-algebras. Then the mapping

𝜙 := 𝜓−1 ∘ 𝜃 : 𝐶*
𝑟 (𝑆) −→ 𝐶*

𝑟 (𝑆 ×𝐺)

is an injective *-homomorphism. It remains to confirm that 𝜙(𝑇𝑎) = 𝑇𝜏(𝑎). Indeed, since
𝜓(𝑇(𝑎,𝑒)) = 𝑇𝑎 ⊗ 𝐼, then 𝜙(𝑇𝑎) = 𝑇(𝑎,𝑒) = 𝑇𝜏(𝑎).
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We observe that Theorem 2.1 can be proved also without using Lemma 2.16 from [8]. This
can be done in the same way how Theorem 3.1 was proved in [22].
Let us sketch the proof. We represent the Hilbert space 𝑙2(𝑆 × 𝐺) as a direct sum of its

subspaces

𝑙2(𝑆 ×𝐺) =
⨁︁
𝑔∈𝐺

𝐻𝑔,

where the basis in the subspace 𝐻𝑔 is the set {𝑒(𝑎,𝑔) | 𝑎 ∈ 𝑆}. Each subspace 𝐻𝑔 is invariant with
respect to each operator 𝑇(𝑎,𝑒) and 𝑇

*
(𝑎,𝑒), 𝑎 ∈ 𝑆, and with respect to each operator monomial

of form ̂︀𝑉(𝑎,𝑒) := ̂︀𝑇 𝑖1(𝑎1,𝑒) ̂︀𝑇 𝑖2(𝑎2,𝑒) . . . ̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑒),
where 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ 𝑆×𝑘, 𝑒 = (𝑒, . . . , 𝑒) ∈ 𝐺×𝑘, 𝑖1, . . . , 𝑖𝑘 ∈ {−1, 1}, 𝑘 ∈ N.
Then we define a mapping 𝜙 by the identities 𝜙(𝑇𝑎) = 𝑇(𝑎,𝑒), 𝜙(𝑇

*
𝑎 ) = 𝑇 *

(𝑎,𝑒) and we extend it

to the operator monomials ̂︀𝑉𝑎 of form (1.3):

𝜙(̂︀𝑉𝑎) = ̂︀𝑉(𝑎,𝑒)
and on finite linear combinations 𝐴 of form (1.4):

𝜙(𝐴) =
𝑚∑︁
𝑖=1

𝛼𝑖𝜙(̂︀𝑉𝑎𝑖) = 𝑚∑︁
𝑖=1

𝛼𝑖̂︀𝑉(𝑎𝑖,𝑒).
The well-definiteness of such extension is proved by means of unitary operators

𝑈𝑔 : 𝑙
2(𝑆) −→ 𝐻𝑔 : 𝑒𝑎 ↦→ 𝑒(𝑎,𝑔),

for all 𝑎 ∈ 𝑆, 𝑔 ∈ 𝐺. The constructed mapping 𝜙 is a unital *-homomorphism from the algebra
𝒫(𝑆) into the 𝐶*-algebra 𝐶*

𝑟 (𝑆 ×𝐺).
Finally, it can be shown that for each 𝐴 ∈ 𝒫(𝑆) the identity

𝜙(𝐴) =
⨁︁
𝑔∈𝐺

𝑈𝑔𝐴𝑈
*
𝑔

holds true. Therefore, 𝜙 is an isometric *-homomorphism. It remains to extend 𝜙 to an
isometric *-homomorphism on the entire 𝐶*-algebra 𝐶*

𝑟 (𝑆).
We note that if the semigroup 𝑆 contains the unit 𝑒, then the trivial extension 𝐿 possesses

a generating set. Indeed, as it can be easily checked, the generating set is

𝑋 = {(𝑒, 𝑔) | 𝑔 ∈ 𝐺}.
Then the existence of an isometric *-homomorphism 𝜙 : 𝐶*

𝑟 (𝑆) −→ 𝐶*
𝑟 (𝐿) follows from [22,

Thm. 3.1]. On the other hand, Theorem 2.1 provides an example of the extension 𝐿 of
the semigroup 𝑆, which does not possess a generating set but an embedding of 𝐶*-algebras
𝐶*
𝑟 (𝑆) −→ 𝐶*

𝑟 (𝐿) exists.

Example 2.1. As the semigroup 𝑆 we choose an additive semigroup of natural numbers N.
Let 𝐺 be an arbitrary group with the unit 𝑒. Then the Cartesian product N×𝐺 is a semigroup
with respect to the multiplication

(𝑛, 𝑔)(𝑚,ℎ) = (𝑛+𝑚, 𝑔ℎ), (2.1)

where 𝑛,𝑚 ∈ N, 𝑔, ℎ ∈ 𝐺. An extension (N×𝐺, 𝜏, 𝜎) of the semigroup N, where 𝜏(𝑛) = (𝑛, 𝑒)
and 𝜎(𝑛, 𝑔) = 𝑔 possesses no generating set. Indeed, assume that such set 𝑋 exists. Then the
element 𝑥𝑔 = (𝑥, 𝑔) ∈ 𝑋 should be represented as (𝑥, 𝑔) = 𝜏(𝑛)(𝑥, 𝑔) for some 𝑛 ∈ N. But
then (𝑥, 𝑔) = (𝑛+ 𝑥, 𝑔) and therefore 𝑛 = 0. We obtain a contradiction. On the other hand, by
Theorem 2.1, there exists an isometric *-homomorphism

𝜙 : 𝐶*
𝑟 (N) −→ 𝐶*

𝑟 (N×𝐺),
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such that 𝜙(𝑇𝑛) = 𝑇𝜏(𝑛), where 𝑛 ∈ N.

3. Trivial extensions of semigroups and modules over semigroup 𝐶*
-algebras

Throughout this section (𝐿, 𝜏, 𝜎) is a trivial extension of the semigroup 𝑆 by means of the
group 𝐺. That is, up to an isomorphism of semigroups, we have the identity

𝐿 = 𝑆 ×𝐺,

and 𝜏(𝑎) = (𝑎, 𝑒), 𝜎(𝑎, 𝑔) = 𝑔 for all 𝑎 ∈ 𝑆, 𝑔 ∈ 𝐺.
To prove the main result of the present section we employ a topological grading of the 𝐶*-

algebra 𝐶*
𝑟 (𝐿) over the group 𝐺. The construction of such grading was made and justified

in work [12] for an arbitrary reduced semigroup 𝐶*-algebra under the existence of a surjective
semigroup homomorphism from the corresponding semigroup onto the group 𝐺. The definitions
of the graded and topologically graded 𝐶*-algebra can be found in [23, Sects. 16.2, 19.2]. In
what follows we give a short description of the construction allowing one to obtain a topological
grading of the 𝐶*-algebra 𝐶*

𝑟 (𝐿) over the group 𝐺.
Since (𝐿, 𝜏, 𝜎) is an extension of the semigroup 𝑆 by means of the group 𝐺, we have a

surjective semigroup homomorphism

𝜎 : 𝐿 −→ 𝐺.

For the semigroup 𝐿 we consider a free semigroup ℱ(𝐿) of monomials (1.2) formed by the
letters in the alphabet {𝑇−1

𝑥 , 𝑇 1
𝑥 | 𝑥 ∈ 𝐿}:

𝑉𝑥 := 𝑇 𝑖1𝑥1𝑇
𝑖2
𝑥2
. . . 𝑇 𝑖𝑘𝑥𝑘 ,

where 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ 𝐿×𝑘, 𝑖1, . . . , 𝑖𝑘 ∈ {−1, 1}, 𝑘 ∈ N.
We define a mapping ind : ℱ(𝐿) −→ 𝐺 by the formula

ind (𝑉𝑥) = 𝜎(𝑥1)
𝑖1𝜎(𝑥2)

𝑖2 . . . 𝜎(𝑥𝑘)
𝑖𝑘 .

It is easy to see that the mapping ind is an involutve surjective homomorphism of the semi-
groups. The value ind (𝑉𝑥) is called a 𝜎-index of a monomial 𝑉𝑥.
It was shown in [12, Lm. 1] that if two monomials define the same operator monomial, then

their 𝜎-indices coincide, that is, if ̂︀𝑉𝑥 = ̂︀𝑉𝑦, then ind (𝑉𝑥) = ind (𝑉𝑦). This is the quantity

ind (𝑉𝑥) ∈ 𝐺 can be also called 𝜎-index of the operator monomial ̂︀𝑉𝑥. It is easy to confirm that
the set of monomials with 𝜎-index 𝑒 is an involutive semigroup in the group of all monomials
ℱ(𝐿).
Let A𝑒 stand for the 𝐶*-subalgebra in the 𝐶*-algebra 𝐶*

𝑟 (𝐿) generated by the set of all
operator monomials with 𝜎-index 𝑒. Let A𝑔 be a Banach subspace in the 𝐶*-algebra 𝐶*

𝑟 (𝐿)
being a closure of the linear span of the set of all operator monomials with 𝜎-index 𝑔, 𝑔 ∈ 𝐺.
The family of subspaces {A𝑔 | 𝑔 ∈ 𝐺} forms a topological 𝐺-grading of the reduced semigroup

𝐶*-algebra 𝐶*
𝑟 (𝐿) [12, Thm. 2].

Now we prove one technical lemma.

Lemma 3.1. Let 𝑆 be a semigroup with a left cancellation and 𝐺 be a group with a unit 𝑒.
Then in the 𝐶*-algebra 𝐶*

𝑟 (𝐿) for all 𝑎1, . . . , 𝑎𝑘 ∈ 𝑆 and 𝑔1, . . . , 𝑔𝑘 ∈ 𝐺 the following identity
holds for the operator monomials:̂︀𝑇 𝑖1(𝑎1,𝑔1) . . . ̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,𝑔𝑘−1)
̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑔𝑘) = ̂︀𝑇 𝑖1(𝑎1,𝑒) . . . ̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,𝑒)
̂︀𝑇 𝑖𝑘
(𝑎𝑘,𝑔

𝑖𝑘 )
, (3.1)

where 𝑔 = 𝑔𝑖11 𝑔
𝑖2
2 . . . 𝑔

𝑖𝑘
𝑘 , 𝑖1, . . . , 𝑖𝑘 ∈ {−1, 1}, 𝑘 ∈ N, 𝑘 ≥ 2.
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Proof. We consider an arbitrary monomial̂︀𝑇 𝑖1(𝑎1,𝑔1) . . . ̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,𝑔𝑘−1)
̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑔𝑘).

We shall prove the lemma by induction in the length 𝑘 of the monomial.
Let 𝑘 = 2. Then identity (3.1) becomes:̂︀𝑇 𝑖(𝑎,𝑝) ̂︀𝑇 𝑗(𝑏,𝑞) = ̂︀𝑇 𝑖(𝑎,𝑒) ̂︀𝑇 𝑗(𝑏,(𝑝𝑖𝑞𝑗)𝑗), (3.2)

where 𝑎, 𝑏 ∈ 𝑆, 𝑝, 𝑞 ∈ 𝐺, 𝑖, 𝑗 ∈ {−1, 1}. Let us prove; in order to do this, we consider four
cases.
1) Let 𝑖 = 𝑗 = 1. Then

𝑇(𝑎,𝑝)𝑇(𝑏,𝑞) = 𝑇(𝑎𝑏,𝑝𝑞) = 𝑇(𝑎,𝑒)𝑇(𝑏,𝑝𝑞).

2) Let 𝑖 = 𝑗 = −1. Then

𝑇 *
(𝑎,𝑝)𝑇

*
(𝑏,𝑞) = 𝑇 *

(𝑏𝑎,𝑞𝑝) = (𝑇(𝑏,𝑞𝑝)𝑇(𝑎,𝑒))
* = 𝑇 *

(𝑎,𝑒)𝑇
*
(𝑏,(𝑝−1𝑞−1)−1).

3) Let 𝑖 = −1, 𝑗 = 1. We calculate 𝑇 *
(𝑎,𝑝)𝑇(𝑏,𝑞) on an arbitrary basis vector 𝑒(𝑐,ℎ) ∈ 𝑙2(𝑆 ×𝐺).

If 𝑇 *
(𝑎,𝑝)𝑇(𝑏,𝑞)𝑒(𝑐,ℎ) ̸= 0, then

𝑇 *
(𝑎,𝑝)𝑇(𝑏,𝑞)𝑒(𝑐,ℎ) = 𝑒(𝑑,𝑝−1𝑞ℎ)

for some 𝑑 ∈ 𝑆 such that 𝑎𝑑 = 𝑏𝑐. Indeed,

⟨𝑇 *
(𝑎,𝑝)𝑇(𝑏,𝑞)𝑒(𝑐,ℎ), 𝑒(𝑑,𝑝−1𝑞ℎ)⟩ = ⟨𝑒(𝑏𝑐,𝑞ℎ), 𝑇(𝑎,𝑝)𝑒(𝑑,𝑝−1𝑞ℎ)⟩ = ⟨𝑒(𝑏𝑐,𝑞ℎ), 𝑒(𝑎𝑑,𝑞ℎ)⟩ ≠ 0

if and only if 𝑎𝑑 = 𝑏𝑐. On the other hand, in this case,

𝑇 *
(𝑎,𝑒)𝑇(𝑏,𝑝−1𝑞)𝑒(𝑐,ℎ) = 𝑒(𝑑,𝑝−1𝑞ℎ).

If there exists no such 𝑑, then

𝑇 *
(𝑎,𝑝)𝑇(𝑏,𝑞)𝑒(𝑐,ℎ) = 𝑇 *

(𝑎,𝑒)𝑇(𝑏,𝑝−1𝑞)𝑒(𝑐,ℎ) = 0.

Thus, we have the identity of operators:

𝑇 *
(𝑎,𝑝)𝑇(𝑏,𝑞) = 𝑇 *

(𝑎,𝑒)𝑇(𝑏,𝑝−1𝑞).

4) Let 𝑖 = 1, 𝑗 = −1. We again calculate 𝑇(𝑎,𝑝)𝑇
*
(𝑏,𝑞) on an arbitrary basis vector 𝑒(𝑐,ℎ) ∈

𝑙2(𝑆 ×𝐺). If 𝑇(𝑎,𝑝)𝑇
*
(𝑏,𝑞)𝑒(𝑐,ℎ) ̸= 0, then

𝑇(𝑎,𝑝)𝑇
*
(𝑏,𝑞)𝑒(𝑐,ℎ) = 𝑒(𝑎𝑑,𝑝𝑞−1ℎ)

for some 𝑑 ∈ 𝑆 such that 𝑐 = 𝑏𝑑. On the other hand, in this case we have:

𝑇(𝑎,𝑒)𝑇
*
(𝑏,𝑞𝑝−1)𝑒(𝑐,ℎ) = 𝑒(𝑎𝑑,(𝑞𝑝−1)−1ℎ) = 𝑒(𝑎𝑑,𝑝𝑞−1ℎ).

If there exists no such 𝑑, then

𝑇(𝑎,𝑝)𝑇
*
(𝑏,𝑞)𝑒(𝑐,ℎ) = 𝑇(𝑎,𝑒)𝑇

*
(𝑏,𝑞𝑝−1)𝑒(𝑐,ℎ) = 0.

Thus, we have an identity:

𝑇(𝑎,𝑝)𝑇
*
(𝑏,𝑞) = 𝑇(𝑎,𝑒)𝑇

*
(𝑏,𝑞𝑝−1) = 𝑇(𝑎,𝑒)𝑇

*
(𝑏,(𝑝𝑞−1)−1).

The considered four cases prove completely identity (3.2).
Now we consider a monomial of an arbitrary length 𝑘. By the induction assumption we have

the identity ̂︀𝑇 𝑖1(𝑎1,𝑔1) . . . ̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,𝑔𝑘−1)
̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑔𝑘) = ̂︀𝑇 𝑖1(𝑎1,𝑒) . . . ̂︀𝑇 𝑖𝑘−2

(𝑎𝑘−2,𝑒)
̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,ℎ
𝑖𝑘−1 )

̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑔𝑘), (3.3)

where ℎ = 𝑔𝑖11 𝑔
𝑖2
2 . . . 𝑔

𝑖𝑘−1

𝑘−1 . We apply formula (3.2) to the product ̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,ℎ
𝑖𝑘−1 )

̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑔𝑘). This gives
the identity ̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,ℎ
𝑖𝑘−1 )

̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑔𝑘) = ̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,𝑒)
̂︀𝑇 𝑖𝑘
(𝑎𝑘,(ℎ𝑔

𝑖𝑘
𝑘 )𝑖𝑘 )

= ̂︀𝑇 𝑖𝑘−1

(𝑎𝑘−1,𝑒)
̂︀𝑇 𝑖𝑘
(𝑎𝑘,𝑔

𝑖𝑘 )
, (3.4)
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where 𝑔 = 𝑔𝑖11 . . . 𝑔
𝑖𝑘−1

𝑘−1 𝑔
𝑖𝑘
𝑘 . Taking into consideration identities (3.3) and (3.4), we obtain desired

identity (3.1).

In the next theorem we see what is the 𝐶*-subalgebra A𝑒 of the semigroup 𝐶*-algebra 𝐶*
𝑟 (𝐿).

Theorem 3.1. Let 𝑆 be a semigroup with a left cancellation and (𝐿, 𝜏, 𝜎) be a trivial exten-
sion of this semigroup by means of the group 𝐺. Let A𝑒 be the 𝐶*-subalgebra in the 𝐶*-algebra
𝐶*
𝑟 (𝐿) generated by the operator monomials of 𝜎-index 𝑒, where 𝑒 is the unit of the group 𝐺.

Then an isometric isomorphism of 𝐶*-algebras holds:

𝐶*
𝑟 (𝑆)

∼= A𝑒.

Proof. An operator monomial the 𝐶*-algebra 𝐶*
𝑟 (𝐿) reads aŝ︀𝑉(𝑎,𝑔) := ̂︀𝑇 𝑖1(𝑎1,𝑔1) ̂︀𝑇 𝑖2(𝑎2,𝑔2) . . . ̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑔𝑘), (3.5)

where 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ 𝑆×𝑘, 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈ 𝐺×𝑘, 𝑖1, . . . , 𝑖𝑘 ∈ {−1, 1}, 𝑘 ∈ N. At the same
time, the 𝜎-index of operator monomial (3.5) is equal to

ind (𝑉(𝑎,𝑔)) = 𝑔𝑖11 𝑔
𝑖2
2 . . . 𝑔

𝑖𝑘
𝑘 . (3.6)

By Theorem 2.1 we obtain that there exists an isometric *-homomorphism

𝜙 : 𝐶*
𝑟 (𝑆) −→ 𝐶*

𝑟 (𝐿) : 𝑇𝑎 ↦→ 𝑇(𝑎,𝑒).

Then for each operator monomial ̂︀𝑉𝑎 ∈ 𝐶*
𝑟 (𝑆) of form (1.3) the identity holds: 𝜙(̂︀𝑉𝑎) = ̂︀𝑉(𝑎,𝑒),

where 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ 𝑆×𝑘, 𝑒 = (𝑒, . . . , 𝑒) ∈ 𝐺×𝑘, 𝑘 ∈ N. Since ind (𝑉(𝑎,𝑒)) = 𝑒, then
𝜙(𝒫(𝑆)) ⊂ A𝑒 and therefore, we can consider a corestriction of 𝜙 on A𝑒:

𝜙0 : 𝐶*
𝑟 (𝑆) −→ A𝑒, (3.7)

which is an injective *-homomorhpism. Let us show that 𝜙0 is surjective.
It follows from Lemma 3.1 and formula (3.6) that if ind (𝑉(𝑎,𝑔)) = 𝑒, then we have the identitŷ︀𝑉(𝑎,𝑔) = ̂︀𝑇 𝑖1(𝑎1,𝑔1) ̂︀𝑇 𝑖2(𝑎2,𝑔2) . . . ̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑔𝑘) = ̂︀𝑇 𝑖1(𝑎1,𝑒) ̂︀𝑇 𝑖2(𝑎2,𝑒) . . . ̂︀𝑇 𝑖𝑘(𝑎𝑘,𝑒) = ̂︀𝑉(𝑎,𝑒).

This means that a dense subalgebra in the 𝐶*-algebra A𝑒 coincides with the set of all possible
finite linear combinations

𝑚∑︁
𝑖=1

𝛼𝑖̂︀𝑉(𝑎𝑖,𝑒)
of the operators of form ̂︀𝑉(𝑎,𝑒), where 𝑎 = (𝑎1, . . . , 𝑎𝑘) ∈ 𝑆×𝑘, 𝑒 = (𝑒, . . . , 𝑒) ∈ 𝐺×𝑘, 𝑘 ∈ N. This
implies the surjectivity of the homomorphism 𝜙0. Thus, 𝜙0 is an isometric isomorphism of the
𝐶*-algebras 𝐶*

𝑟 (𝑆) and A𝑒.

On the underlaying space of the 𝐶*-algebra 𝐶*
𝑟 (𝐿) we define a structure of the Banach

𝐶*
𝑟 (𝑆)-module by defining the operation of the left external multiplication as follows:

𝐴 ·𝐵 = 𝜙0(𝐴)𝐵, (3.8)

where 𝐴 ∈ 𝐶*
𝑟 (𝑆), 𝐵 ∈ 𝐶*

𝑟 (𝐿) and 𝜙0 : 𝐶*
𝑟 (𝑆) −→ A𝑒 is isometric isomorphism (3.7) from

Theorem 3.1. In what follows we shall show that if 𝐿 is a trivial extension of the semigroup 𝑆
by means of a finite group, then this module is free. But first we need one auxiliary statement.
We fix an arbitrary element 𝑎 ∈ 𝑆. In the 𝐶*-algebra 𝐶*

𝑟 (𝐿), for each 𝑔 ∈ 𝐺 we consider the
operators of form 𝑉𝑔 := 𝑇 *

(𝑎,𝑒)𝑇(𝑎,𝑔). Let us show that 𝑉𝑔 are unitary operators. Indeed, taking
into consideration Lemma 3.1, we obtain the identities:

𝑉𝑔𝑉
*
𝑔 = 𝑇 *

(𝑎,𝑒)𝑇(𝑎,𝑔)𝑇
*
(𝑎,𝑔)𝑇(𝑎,𝑒) = 𝑇 *

(𝑎,𝑒)𝑇(𝑎,𝑒)𝑇
*
(𝑎,𝑒)𝑇(𝑎,𝑔𝑔−1) = 𝐼,

𝑉 *
𝑔 𝑉𝑔 = 𝑇 *

(𝑎,𝑔)𝑇(𝑎,𝑒)𝑇
*
(𝑎,𝑒)𝑇(𝑎,𝑔) = 𝑇 *

(𝑎,𝑒)𝑇(𝑎,𝑒)𝑇
*
(𝑎,𝑒)𝑇(𝑎,𝑔−1𝑔) = 𝐼.
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Lemma 3.2. For each 𝑔 ∈ 𝐺 the identity

A𝑔 = 𝐶*
𝑟 (𝑆) · 𝑉𝑔

holds, that is, the space A𝑔 is a cyclic Banach 𝐶*
𝑟 (𝑆)-module and the element 𝑉𝑔 is a cyclic

element of the module A𝑔.

Proof. In view of identity (3.8) and the fact that 𝜙0 : 𝐶*
𝑟 (𝑆) −→ A𝑒 is an isometric isomorphism,

in order to prove the lemma, it is sufficient to prove the identity

A𝑔 = {𝐴𝑉𝑔 | 𝐴 ∈ A𝑒}.

Since ind (𝑉𝑔) = 𝑔 and ‖𝑉𝑔‖ = 1, the proof of the needed identity reproduce literally the proof
of Lemma 5 in [12].

Theorem 3.2. Let 𝑆 be a semigroup with a left cancellation, 𝐺 be a finite group and (𝐿, 𝜏, 𝜎)
be a trivial extension of the semigroup 𝑆 by means of the group 𝐺. Then there exists a topological
isomorphism of the Banach 𝐶*

𝑟 (𝑆)-modules

𝐶*
𝑟 (𝐿)

∼=
⨁︁
1

𝐶*
𝑟 (𝑆),

where the number of the terms in the direct 𝑙1-sum is equal to the order of the group 𝐺. In
other words, the 𝐶*-algebra 𝐶*

𝑟 (𝐿) is a free Banach 𝐶*
𝑟 (𝑆)-module.

Proof. We first observe that since the group 𝐺 is finite, then as it was shown in [12, Thm. 4],
the underlaying space of 𝐶*-algebra 𝐶*

𝑟 (𝐿) is represented as the direct sum of its subspaces:

𝐶*
𝑟 (𝐿) =

⨁︁
𝑔∈𝐺

A𝑔.

This means that each element 𝐴 ∈ 𝐶*
𝑟 (𝐿) is uniquely represented as a finite sum

𝐴 =
∑︁
𝑔∈𝐺

𝐴𝑔,

where 𝐴𝑔 ∈ A𝑔.
To prove the theorem, it is sufficient to show the existence of an isomorphism of 𝐶*

𝑟 (𝑆)-
modules ⨁︁

𝑔∈𝐺

A𝑔
∼=

⨁︁
1

𝐶*
𝑟 (𝑆).

It follows from Lemma 3.2 that the 𝐶*
𝑟 (𝑆)-module A𝑔 is topologically isomorphic to the quotient

module 𝐶*
𝑟 (𝑆)/Ann{𝑉𝑔} [25, Prop. VI.2.3], where

Ann{𝑉𝑔} := {𝐴 ∈ 𝐶*
𝑟 (𝑆) | 𝐴 · 𝑉𝑔 = 0}

is the annulator of the element 𝑉𝑔. Since 𝑉𝑔 is a unitary element, it is easy to confirm that
Ann{𝑉𝑔} = 0. Therefore, we have a topological isomorphism of Banach 𝐶*

𝑟 (𝑆)-modules

𝜓𝑔 : 𝐶
*
𝑟 (𝑆) −→ A𝑔 : 𝐴 ↦→ 𝐴 · 𝑉𝑔.

We define a linear mapping:

𝛼 :
⨁︁
1

𝐶*
𝑟 (𝑆) −→

⨁︁
𝑔∈𝐺

A𝑔

by the formula

𝛼(𝐵) =
∑︁
𝑔∈𝐺

𝜓𝑔(𝐵𝑔),
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where 𝐵 = (𝐵𝑔)𝑔∈𝐺 ∈
⨁︀
1

𝐶*
𝑟 (𝑆). It is easy to confirm that 𝛼 is surjective. The injectivity of 𝛼

is implied by the linear independence of the family of the subspaces {A𝑔}𝑔∈𝐺. The continuity
of 𝛼 follows from the chain of inequalities

‖𝛼(𝐵)‖ 6
∑︁
𝑔∈𝐺

‖𝜓𝑔(𝐵𝑔)‖ 6 max
𝑔∈𝐺

‖𝜓𝑔‖ ·
∑︁
𝑔∈𝐺

‖𝐵𝑔‖ = max
𝑔∈𝐺

‖𝜓𝑔‖ · ‖𝐵‖1.

Since 𝛼 is a bijective bounded linear operator, then by the Banach theorem on the inverse
operator it has a bounded inverse operator

𝛼−1 :
⨁︁
𝑔∈𝐺

A𝑔 −→
⨁︁
1

𝐶*
𝑟 (𝑆).

It is obvious that 𝛼 and 𝛼−1 are morphisms of left 𝐶*
𝑟 (𝑆)-modules. Therefore, the mapping 𝛼

is a topological isomorphism of Banach 𝐶*
𝑟 (𝑆)-modules. Thus, the 𝐶*-algebra 𝐶*

𝑟 (𝐿) is a free
Banach 𝐶*

𝑟 (𝑆)-module.

In work [13], there were described conditions under which the underlaying space of an arbi-
trary topologically graded semigroup 𝐶*-algebra 𝐶*

𝑟 (𝐿) possesses a structure of a free Banach
module over its subalgebra A𝑒. Namely, let 𝑋 := {𝑥𝑔 | 𝑔 ∈ 𝐺} be a set of elements in 𝐿 such
that the condition 𝑋 ∩ 𝜎−1(𝑔) = {𝑥𝑔} holds. Let 𝐺 be a finite group and in the semigroup 𝐿
there exists a set 𝑋 such that each element is invertible in 𝐿. Then the 𝐶*-algebra 𝐶*

𝑟 (𝐿) is a
free Banach A𝑒-module [13, Thm. 2].
If under the assumptions of Theorem 3.2 the semigroup 𝑆 contains the unit 𝑒, then in the

semigroup 𝐿 there exists a set 𝑋 such that each its element is invertible:

𝑋 = {(𝑒, 𝑔) | 𝑔 ∈ 𝐺}.
Then Theorem 3.2 is a corollary of Theorem 3.1 and [13, Thm. 2]. On the other hand, if
the semigroup 𝑆 contains no unity, then Theorem 3.2 provides an example showing that the
statement inverse to [13, Thm. 2] is wrong.

Example 3.1. Let 𝐺 be a finite group. As in Example 2.1, we consider an additive semigroup
of natural numbers N and the Cartesian product N×𝐺 with a multiplication defined by formula
(2.1). Then the 𝐶*-algebra 𝐶*

𝑟 (N × 𝐺) is a free Banach module over the Toeplitz algebra
𝒯 = 𝐶*

𝑟 (N) and we have an isomorphism of Banach 𝒯 -modules:

𝐶*
𝑟 (N×𝐺) ∼=

⨁︁
1

𝒯 .

At the same time, the semigroup N×𝐺 contains no other subgroups.

BIBLIOGRAPHY

1. L.A. Coburn. The 𝐶*-algebra generated by an isometry // Bull. Amer. Math. Soc. 73:5, 722–726
(1967).

2. L.A. Coburn. The 𝐶*-algebra generated by an isometry II // Trans. Amer. Math. Soc. 137, 211–217
(1969).

3. R.G. Douglas. On the 𝐶*-algebra of a one-parameter semigroup of isometries // Acta Math. 128:3,
143–151 (1972).

4. G.J. Murphy. Ordered groups and Toeplitz algebras // J. Oper. Theory. 18:2, 303–326 (1987).
5. G.J. Murphy. Toeplitz operators and algebras // Math. Z. 208:3, 355–362 (1991).
6. A. Nica. 𝐶*-algebras generated by isometries and Wiener – Hopf operators // J. Oper. Theory.
27:1, 17–52 (1992).

7. M. Laca, I. Raeburn. Semigroup crossed products and the Toeplitz algebras of nonabelian groups //
J. Funct. Anal. 139:2, 415–440 (1996).



TRIVIAL EXTENSIONS OF SEMIGROUPS AND SEMIGROUP 𝐶*
-ALGEBRAS 77

8. X. Li Semigroup 𝐶*-algebras and amenability of semigroups // J. Funct. Anal. 262:10, 4302–4340
(2012).

9. S.A. Grigoryan, T.A. Grigoryan, E.V. Lipacheva, A. S. Sitdikov. 𝐶*-Algebra generated by the path

semigroup // Lobachevskii J. Math. 37:6, 740–748 (2016).
10. S.A. Grigoryan, E.V. Lipacheva, A.S. Sitdikov. Nets of graded 𝐶*-algebras over partially ordered

sets // Alg. Anal. 30:6, 1–19 (2018). [St. Petersburg Math. J. 30:6, 901–915 (2019).]
11. R.N. Gumerov, E.V. Lipacheva. Topological grading of semigroup 𝐶*-algebras // Herald of the

Bauman Moscow State Technical University, Series Natural Sciences. 90:3, 44–55 (2020).
12. E.V. Lipacheva. On graded semigroup 𝐶*-algebras and Hilbert modules // Trudy MIAN. 313,

131–142 (2021). [Proc. Steklov Inst. Math. 313, 120–130 (2021).]
13. E.V. Lipacheva. A Semigroup 𝐶*-algebra which is a Free Banach Module // Lobachevskii J. Math.

42:10, 2386–2391 (2021).
14. B.V. Novikov. Semigroup cohomologies: a survey // Fund. Prikl. Matem. 7:1, 1–18 (2001). (in

Russian).
15. A.H. Clifford. Extensions of semigroups // Trans. Amer. Math. Soc. 68:2, 165–173 (1950).
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the normal extensions of monoids // Lobachevskii J. Math. 42:10, 2295–2305 (2021).
20. S.A. Grigoryan, R.N. Gumerov, E.V. Lipacheva. On extensions of semigroups and their applica-

tions to Toeplitz algebras // Lobachevskii J. Math. 40:12, 2052–2061 (2019).
21. R.N. Gumerov. Normal extensions of semigroups and embeddings of semigroup 𝐶*-algebras //

Trudy MFTI. 12:1, 74–82 (2020). (in Russian).
22. E.V. Lipacheva. Extensions of semigroups and morphisms of semigroup 𝐶*-algebras // Sibir.

Matem. Zh. 62:1, 82–96 (2021). [Siberian Math. J. 62:1, 66–76 (2021).]
23. R. Exel. Partial dynamical systems, Fell bundles and applications. Amer. Math. Soc., Providence,

RI. (2017).
24. E.S. Lyapin. Semigroups. Fizmatgiz, Moscow (1960). [Amer. Math. Soc., Providence, R.I. (1974).]
25. A.Ya Helemskii. Banach and polynormed algebras. General theory, representations, homologies.

Nauka, Moscow (1989). [Banach and locally convex algebras. Clarendon Press, Oxford (1993).]

Ekaterina Vladimirovna Lipacheva,
Kazan State Power Engineering University,
Krasnoselskaya str. 51,
420066, Kazan, Russia

Lobachevskii Institute of Mathematics and Mechanics,
Kazan Federal University,
Kremlevskaya str. 35,
420008, Kazan, Russia
E-mail: elipacheva@gmail.com


	to1. Preliminaries
	to2. Embeddings of semigroup C*-algebras induced  by trivial extensions of semigroups
	to3. Trivial extensions of semigroups and modules over semigroup C*-algebras
	 References

