A Semigroup C^* -Algebra Which Is a Free Banach Module

E. V. Lipacheva*

(Submitted by G. G. Amosov)

Chair of Higher Mathematics, Kazan State Power Engineering University, Kazan, 420066 Russia Received April 29, 2021; revised May 12, 2021; accepted May 18, 2021

Abstract—We consider the reduced semigroup C^* -algebras for monoids with the cancellation property. If there exists a surjective semigroup homomorphism from a monoid onto a group then the corresponding semigroup C^* -algebra can be endowed with the structure of a Banach module over its C^* -subalgebra. For a such monoid, we give conditions under which this Banach module is free.

DOI: 10.1134/S1995080221100152

Keywords and phrases: reduced semigroup C^* -algebra, free Banach module, graded C^* -algebra, cyclic Banach module, topological isomorphism of Banach modules.

INTRODUCTION

The note is concerned with the reduced semigroup C^* -algebras which are generated by the left regular representations of semigroups with the cancellation property. These algebras are studied by Coburn [1, 2], Douglas [3] and Murphy [4, 5]. Further, the theory of semigroup C^* -algebras was developed in the papers by a number of authors (see, for example, [6] and references therein).

We studied properties of the reduced semigroup C^* -algebras in [7–17]. The work presented here is a continuation of the research carried out in [18]. There we constructed a topological grading of a semigroup C^* -algebra $C_r^*(S)$ by means of an arbitrary group G. Moreover, the C^* -algebra $C_r^*(S)$ was endowed with the structure of a left Banach module over its C^* -subalgebra \mathfrak{A}_e , where e is the unit of the group G. In the case of a finite group G, it was proved that $C_r^*(S)$ is a finitely generated projective Hilbert \mathfrak{A}_e -module.

In this note we give conditions under which the \mathfrak{A}_e -module $C_r^*(S)$ is a free Banach module. The grading of the C^* -algebra $C_r^*(S)$ is involved in the proof of the main result on a free Banach module. As is known, a grading of an object in a category allows to understand better the structure of this object. In the category of C^* -algebras, one deals with the gradings which are also called the C^* -bundles, or the Fell bundles. Recall that the notion of the topologically graded C^* -algebra was introduced by Excel (see for example [19]) with the aim to define non-commutative versions for concepts of harmonic analysis.

The note consists of Introduction and two Sections. Section 1 contains the necessary information about the semigroup C^* -algebras and the Banach modules over C^* -algebras. In Section 2 we formulate and prove the results on free Banach \mathfrak{A}_e -modules.

^{*}E-mail: elipacheva@gmail.com

1. PRELIMINARIES

Throughout the note S stands for a discrete cancellative monoid with the identity e.

The main object of our study is the reduced semigroup C^* -algebra $C^*_r(S)$ which is defined as follows.

Let us consider the Hilbert space of all square summable complex-valued functions defined on the monoid S:

$$l^{2}(S) := \{ f : S \to \mathbb{C} \mid \sum_{a \in S} |f(a)|^{2} < +\infty \}.$$

The canonical orthonormal basis in the Hilbert space $l^2(S)$ is denoted by $\{e_a \mid a \in S\}$, where

$$e_a(b) := \begin{cases} 1, & \text{if } a = b ; \\ 0, & \text{if } a \neq b . \end{cases}$$

The reduced semigroup C^* -algebra $C_r^*(S)$ is the C^* -subalgebra generated by the set of isometries $\{T_a \mid a \in S\}$ in the algebra of all bounded operators on $l^2(S)$, where the operator T_a is given by the formula

$$T_a(e_b) = e_{ab}, \ a, b \in S.$$

Further, we recall the necessary definitions concerning modules. Notice, by a module we mean a left module over an algebra. For more information about the Banach modules, the reader is referred to the book [20].

Let \mathfrak{A} be a unital Banach algebra. A module \mathfrak{M} over the algebra \mathfrak{A} is called *a Banach* \mathfrak{A} -*module* if \mathfrak{M} is a Banach space with a norm satisfying the inequality $||A \cdot M|| \leq ||A|| ||M||$ for all $A \in \mathfrak{A}, M \in \mathfrak{M}$. A subset X of the Banach \mathfrak{A} -module \mathfrak{M} is called *a generating set* if the set of all finite \mathfrak{A} -linear combinations of elements from X is dense in \mathfrak{M} .

An element *M* of an \mathfrak{A} -module \mathfrak{M} is said to be *cyclic* if the equality

$$\mathfrak{M} = \mathfrak{A} \cdot M := \{ A \cdot M \mid A \in \mathfrak{A} \}$$

holds. A module having a cyclic element is itself called *a cyclic (or one-generator) module*. We recall that a Banach \mathfrak{A} -module \mathfrak{M} is cyclic if and only if it is isomorphic to the quotient module \mathfrak{A}/I for a closed left modular ideal *I*. Moreover, to construct a such isomorphism the annihilator of \mathfrak{M} , which is the kernel of the representation associated with \mathfrak{M} , can be taken as the ideal *I* in the algebra \mathfrak{A} [20, Proposition (VI.2.3)].

Let *E* be a Banach space. There is the structure of a unital left Banach \mathfrak{A} -module in the projective tensor product $\mathfrak{A} \hat{\otimes} E$ which is uniquely determined by the formula

$$A \cdot (B \otimes X) = AB \otimes X, \quad A, B \in \mathfrak{A}, X \in E.$$

A module is called a *free* unital Banach \mathfrak{A} -module if it is topologically isomorphic to the module $\mathfrak{A} \hat{\otimes} E$ for some Banach space E. In particular, the algebra \mathfrak{A} is a free unital Banach \mathfrak{A} -module. The Banach direct sum of n copies of the module \mathfrak{A} is also free unital Banach \mathfrak{A} -module since one has the topological isomorphism of unital Banach \mathfrak{A} -modules:

$$\bigoplus_{1} \mathfrak{A} \cong \mathfrak{A} \hat{\otimes} \mathbb{C}^{n}.$$
⁽¹⁾

Here the symbol \bigoplus_{1} denotes the l_1 -sum (see, for example, [21]).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

LIPACHEVA

2. FREE \mathfrak{A}_e -MODULE

In what follows, G is an arbitrary group. As in the monoid S, the identity element of G is denoted by the letter e.

We suppose that there exists a surjective homomorphism of monoids

$$\sigma: S \longrightarrow G.$$

To obtain the results of the note we need the topological grading of the semigroup C^* -algebra $C_r^*(S)$ over G which was constructed in [18]. The definitions of graded and topologically graded C^* -algebras are contained in [19, §§ 16.2, 19.2]. Further we briefly describe the construction which allows us to set a grading on the C^* -algebra $C_r^*(S)$.

For every element $a \in S$ we consider two symbols T_a^{-1} and T_a^1 . We denote by F the free semigroup over the alphabet $\{T_a^{-1}, T_a^1 \mid a \in S\}$. The semigroup F is involutive. An element V of this semigroup is a word (*monomial*) of the form

$$V = T_{a_1}^{i_1} T_{a_2}^{i_2} \dots T_{a_k}^{i_k}, \tag{2}$$

where $a_1, ..., a_k \in S, i_1, ..., i_k \in \{-1, 1\}, k \in \mathbb{N}$. The involution operation on the semigroup F is given by

$$V^* = T_{a_k}^{1-i_k} T_{a_{k-1}}^{1-i_{k-1}} \dots T_{a_1}^{1-i_1}.$$

We define the mapping ind : $F \longrightarrow G$ by the formula

ind
$$(V) = \sigma(a_1)^{i_1} \sigma(a_2)^{i_2} \dots \sigma(a_k)^{i_k}$$
.

It is easily seen that the mapping ind is involutive surjective homomorphism of semigroups. The value ind (V) is called *the* σ *-index of monomial* V.

Every monomial V defines the bounded linear operator \hat{V} on the Hilbert space $l^2(S)$ as follows:

$$\widehat{T}_a^1 = T_a, \ \widehat{T}_a^{-1} = T_a^*,$$

and if V is a monomial of form (2) then we put

$$\widehat{V} = \widehat{T}_{a_1}^{i_1} \widehat{T}_{a_2}^{i_2} \dots \widehat{T}_{a_k}^{i_k}.$$

We call \widehat{V} an operator monomial.

In [18], it is shown that if two monomials define the same linear operator then the σ -indexes of these monomials coincide. Therefore the value ind $(V) \in G$ is also called *the* σ -*index of an operator monomial* \hat{V} .

It is straightforward to check that the set of all monomials with the σ -index *e* is an involutive subsemigroup in the semigroup of monomials *F*.

In the sequel, the symbol \mathfrak{A}_e stands for the C^* -subalgebra generated by the set of all operator monomials with the σ -index e in the C^* -algebra $C_r^*(S)$.

For every $g \in G$, we denote by the symbol \mathfrak{A}_g the Banach space which is defined as the closure of the linear hull for the set of all operator monomials with the σ -index g in the C^* -algebra $C^*_r(S)$.

The family of subspaces $\{\mathfrak{A}_g \mid g \in G\}$ constitutes a topological *G*-grading for the reduced semigroup C^* -algebra $C_r^*(S)$ [18, Theorem 2]. In the case of a finite group *G*, the underlying linear space of the C^* -algebra $C_r^*(S)$ is represented as the finite direct sum of its subspaces [18, Theorem 4]:

$$C_r^*(S) = \bigoplus_{g \in G} \mathfrak{A}_g.$$
(3)

It follows from equality (3) that each element $A \in C_r^*(S)$ has a unique representation in the form of the finite sum

$$A = \sum_{g \in G} A_g,\tag{4}$$

where $A_g \in \mathfrak{A}_g$.

Moreover, it is proved in [18, Lemma 5] that the space \mathfrak{A}_g is a cyclic Banach \mathfrak{A}_e -module for each $g \in G$. In order to get a generator of the Banach \mathfrak{A}_e -module \mathfrak{A}_g , one takes an arbitrary element x_g from the set $\sigma^{-1}(g)$. Then we have the equality

$$\mathfrak{A}_g = \mathfrak{A}_e \cdot T_{x_q}.\tag{5}$$

The following theorem provides the condition under which the cyclic Banach \mathfrak{A}_e -module \mathfrak{A}_g is a free \mathfrak{A}_e -module.

Theorem 1. Let S be a cancellative monoid. Let G be a group with the identity e and $\sigma: S \longrightarrow G$ be a surjective homomorphism of monoids. For $g \in G$, let \mathfrak{A}_g be the closed linear hull for the set of all operator monomials with the σ -index g in the reduced semigroup C^{*}-algebra $C_r^*(S)$. If there exists an element $x_g \in \sigma^{-1}(g)$ which is invertible in the monoid S then the cyclic Banach \mathfrak{A}_e -module \mathfrak{A}_g is topologically isomorphic to the Banach \mathfrak{A}_e -module \mathfrak{A}_e .

Proof. Let $x_g \in \sigma^{-1}(g)$ be an invertible element in the monoid S. We define the morphism of Banach \mathfrak{A}_e -modules as follows:

$$\varphi:\mathfrak{A}_e\longrightarrow\mathfrak{A}_e\cdot T_{x_g}:A\mapsto A\cdot T_{x_g}.$$

Since equality (5) holds, the module \mathfrak{A}_g is topologically isomorphic to the quotient module $\mathfrak{A}_e/\ker \varphi$ [20, Proposition VI.2.3].

We claim that ker $\varphi = \{0\}$. Indeed, let us suppose that $A \cdot T_{x_g} = B \cdot T_{x_g}$ for $A, B \in \mathfrak{A}_e$. Denote by $x_g^{-1} \in S$ the inverse element of x_g . To obtain a contradiction, we assume that $A \neq B$. Then there exists an element $a \in S$ such that $Ae_a \neq Be_a$. But, on the other hand, one has the equality $A \cdot T_{x_g} e_{x_g^{-1}a} = B \cdot T_{x_g} e_{x_g^{-1}a}$, which implies $Ae_a = Be_a$. Thus we have the contradiction. Hence, ker $\varphi = \{0\}$, as claimed.

Therefore there exists a topological isomorphism $\mathfrak{A}_q \cong \mathfrak{A}_e$ of Banach \mathfrak{A}_e -modules. \Box

Further, we consider a set $X \subset S$ such that for every $g \in G$ there exists a unique element $x \in X$ satisfying the condition $X \cap \sigma^{-1}(g) = \{x\}$. We call X a set of representatives for the preimages $\sigma^{-1}(g)$, where $g \in G$. In [18], it is proved that the C^{*}-algebra $C_r^*(S)$ is a Banach \mathfrak{A}_e -module with the generating set $\{T_x \mid x \in X\}$.

The following theorem contains sufficient conditions under which the \mathfrak{A}_e -module $C_r^*(S)$ is a free Banach \mathfrak{A}_e -module.

Theorem 2. Let S be a cancellative monoid. Let G be a finite group with the identity e and $\sigma: S \longrightarrow G$ be a surjective homomorphism of monoids. Let \mathfrak{A}_e be the C^{*}-subalgebra in the C^{*}-algebra $C_r^*(S)$ generated by all operator monomials with the σ -index e. If there exists a set X of representatives for the preimages $\sigma^{-1}(g)$, $g \in G$, which is contained in a subgroup of the monoid S, then the \mathfrak{A}_e -module $C_r^*(S)$ is a free Banach \mathfrak{A}_e -module.

Proof. Under the hypotheses of the theorem, we shall show that there is a topological isomorphism

$$C_r^*(S) \cong \mathfrak{A}_e \hat{\otimes} \mathbb{C}^n$$

of Banach \mathfrak{A}_e -modules, where *n* is an order of the group *G*. To do this, by (1) and (3), it is sufficient to prove that there exists a topological isomorphism

$$\bigoplus_{g \in G} \mathfrak{A}_g \cong \bigoplus_1 \mathfrak{A}_e \tag{6}$$

between the Banach \mathfrak{A}_e -modules. On the right-hand side of (6), the number of summands in the direct l_1 -sum is equal to the order of the group G. Below we denote an arbitrary element of this sum by a tuple $B = (B_g)_{g \in G}$, whose norm is given by $||B||_1 = \sum_{g \in G} ||B_g||$, where $B_g \in \mathfrak{A}_e$. On the left-hand side of (6),

every element of the direct sum of linear subspaces is written as sum (4).

To construct isomorphism (6), we take a set X of representatives such that each $x \in X$ possesses the inverse element in the monoid S. Then, by Theorem 1, for every $g \in G$ there exists a topological isomorphism of Banach \mathfrak{A}_e -modules

$$\psi_g: \mathfrak{A}_e \longrightarrow \mathfrak{A}_g.$$

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 10 2021

Using the topological isomorphisms ψ_g , we define the linear operator

$$\alpha: \bigoplus_{1} \mathfrak{A}_{e} \longrightarrow \bigoplus_{g \in G} \mathfrak{A}_{g}$$

by the formula $\alpha(B) = \sum_{g \in G} \psi_g(B_g)$.

It is straightforward to check that the operator α is surjective. The linear independence of the family of subspaces $\{\mathfrak{A}_g\}_{g\in G}$ implies the injectivity of the operator α .

The continuity of the operator α follows from the chain of the inequalities

$$||\alpha(B)|| \le \sum_{g \in G} ||\psi_g(B_g)|| \le \max_{g \in G} ||\psi_g|| \sum_{g \in G} ||B_g|| = \max_{g \in G} ||\psi_g|| \, ||B||_1.$$

By the Banach inverse operator theorem, since α is a bijective bounded linear operator between Banach spaces, its inverse linear operator

$$\alpha^{-1}: \bigoplus_{g \in G} \mathfrak{A}_g \longrightarrow \bigoplus_1 \mathfrak{A}_e$$

is bounded as well.

Obviously, both operators α and α^{-1} are morphisms of left \mathfrak{A}_e -modules. Thus the operator α is a topological isomorphism of \mathfrak{A}_e -modules.

Finally, we conclude that the C^* -algebra $C^*_r(S)$ is a free Banach \mathfrak{A}_e -module, as required.

ACKNOWLEDGMENTS

The author thanks Professor S.A. Grigoryan for drawing her attention to the subject under consideration.

REFERENCES

- 1. L. A. Coburn, "The C*-algebra generated by an isometry," Bull. Am. Math. Soc. 73, 722–726 (1967).
- 2. L. A. Coburn, "The C*-algebra generated by an isometry. II," Trans. Am. Math. Soc. 137, 211–217 (1969).
- 3. R. G. Douglas, "On the *C**-algebra of a one-parameter semigroup of isometries," Acta Math. **128**, 143–152 (1972).
- 4. G. J. Murphy, "Ordered groups and Toeplitz algebras," J. Oper. Theory 18, 303–326 (1987).
- 5. G. J. Murphy, "Toeplitz operators and algebras," Math. Z. 208, 355-362 (1991).
- 6. X. Li, "Semigroup *C**-algebras," in *Operator Algebras and Applications, The Abel Symposium 2015,* Ed. by T. M. Carlsen, N. S. Larsen, S. Neshveyev, and Ch. Skau (Springer, Cham, 2016), p. 191.
- 7. M. A. Aukhadiev, S. A. Grigoryan, and E. V. Lipacheva, "A compact quantum semigroup generated by an isometry," Russ. Math. (Iz. VUZ) 55, 78 (2011).
- E. V. Lipacheva and K. H. Hovsepyan, "The structure of C*-subalgebras of the Toeplitz algebra fixed with respect to a finite group of automorphisms," Russ. Math. (Iz. VUZ) 59 (6), 10–17 (2015).
- 9. E. V. Lipacheva and K. H. Hovsepyan, "The structure of invariant ideals of some subalebras of Toeplitz algebra," J. Contemp. Math. Anal. **50** (2), 70–79 (2015).
- 10. S. A. Grigorian and E. V. Lipacheva, "On the structure of *C*^{*}-algebras generated by representations of an elementary inverse semigroup," Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki **158**, 180–193 (2016).
- S. A. Grigoryan, T. A. Grigoryan, E. V. Lipacheva, and A. S. Sitdikov, "C*-algebra generated by the path semigroup," Lobachevskii J. Math. 37, 740–748 (2016).
- 12. E. V. Lipacheva, "On a class of graded ideals of semigroup C*-algebras," Russ. Math. (Iz. VUZ) **62** (10), 37–46 (2018).
- E. V. Lipacheva, "Embedding semigroup C*-algebras into inductive limits," Lobachevskii J. Math. 40, 667– 675 (2019).
- 14. S. A. Grigoryan, E. V. Lipacheva, and A. S. Sitdikov, "Nets of graded *C**-algebras over partially ordered sets," SPb. Math. J. **30**, 901–915 (2019).

2390

- R. N. Gumerov, E. V. Lipacheva, and T. A. Grigoryan, "On a topology and limits for inductive systems of C*-algebras," Int. J. Theor. Phys. 60, 499–511 (2021).
- 16. S. A. Grigoryan, R. N. Gumerov, and E. V. Lipacheva, "On extensions of semigroups and their applications to Toeplitz algebras," Lobachevskii J. Math. 40, 2052–2061 (2019).
- 17. R. N. Gumerov and E. V. Lipacheva, "Topological grading of semigroup C*-algebras," Herald of the Bauman Moscow State Technical University, Series Natural Sciences **90** (3), 44–55 (2020).
- 18. E. V. Lipacheva, "On graded semigroup *C**-algebras and Hilbert modules," Proc. Steklov Inst. Math. **313**, 120–130 (2021).
- 19. R. Exel, *Partial Dynamical Systems, Fell Bundles and Applications*, vol. 224 of *Math. Surv. Monograph* (Am. Math. Soc., Providence, RI, 2017).
- 20. A. Ya. Helemskii, Banach and Locally Convex Algebras (Oxford Science, Clarendon, New York, 1993).
- 21. A. Ya. Helemskii, Lectures and Exercises in Functional Analysis (AMS, Providence, RI, 2006).