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Abstract—A mathematical model of the dynamics of deformation of an overhead power line wire in
a spatial setting is developed, the equations are solved on the basis of the finite difference method in
an explicit scheme. In some cases, the accuracy of the calculations is compared with the obtained
analytical solutions. A numerical study of the loading of a power line under the combined influence
of wind and weight load was carried out. A numerical method for calculating wire breakage and
the movement of parts after a break is proposed. The mechanism of the appearance of oscillatory
motion such as “dancing wires” under the action of a variable wind load. The process of thermal
conductivity and the dynamics of line deformation during melting of icing on wires by heating is
studied, the transient processes of deformation of the power line are studied.
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INTRODUCTION
Due to the relative cheapness of overhead power lines compared to cable ones and given the large

distances, overhead lines (OHL) are widely used. Wires in OHL are subject to significant mechanical
stress. They are constantly loaded with their own weight. Among the causes of additional mechanical
loads, one can single out the effect of wind loads and icy-hoarfrost deposits. These reasons increase the
load on the wires, and can also cause such dangerous forms of dynamic oscillatory processes as vibration
and dancing wires. The wire dance effect is caused by a combination of weight and wind loads of a special
profile. Mechanical loads can cause damage to power lines, which reduces the reliability of power supply
and requires the cost of restoration of OHL.

To increase the reliability of OHL, standard technical solutions are used, and new technical solutions
are proposed for studying the phenomenons of icing and wire dance and controlling them [1–4, 14–16].

The problem of studying mechanical damage to OHL, using both experimental and theoretical
approaches to modeling loading processes, and finding methods to increase reliability is very relevant.

A number of works [5–10] are devoted to the theoretical study of mechanical loads on OHL, using
various approaches to modeling the shape and tension in wires, they can be conditionally divided into
two groups: 1) based on finite formulas, both without and with allowance for elongation wires 2) based
on the numerical integration of the equations of motion.

The first group includes traditional approaches obtained under the assumption of static loading. The
load due to the dead weight of the wire is considered evenly distributed. So in [4, 5] it is believed that
the wire is inextensible and has the shape of a parabola (with a span of up to 800m) or the shape of a
chain line (with a span of more than 800m). In [7], finite formulas were obtained for calculating the static
stress-strain state of an OHL taking into account its tension. The advantage of these approaches is their
ease of use. However, they do not allow to study the dynamics of the loading of OHL wires.

The second group of approaches to calculating the mechanical load of the overhead line allows you
to study the dynamics of loading of the overhead line. These approaches are based on mathematical
modeling of the movement of overhead wires under the action of loads using the equations of motion of an
absolutely flexible system [5–10]. The equations of motion are nonlinear partial differential equations that
are supplemented by initial and boundary conditions. This approach is associated with the compilation
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Fig. 1.

of a mathematical model, its programming, and numerical experiments. It is significantly more labor
intensive than the first approach. The results of the first group of works can serve as tests for those
programs.

It is of practical interest, on the basis of the developed models, to investigate the dynamic behavior of
the wire under the influence of a combined weight and wind load, the deformation of the wire during the
melting of icing by heating, and the behavior of OHL in the "wire dance" mode.

Low-frequency oscillations of overhead transmission lines were considered in [3, 14–16].

1. STATEMENT OF THE PROBLEM
The modeling of the dynamics of overhead transmission lines is carried out according to the model

of an absolutely flexible system. By absolutely flexible systems we mean physical objects that neglect
weak bending stresses, i.e. only work on tension and compression. These include: extended energy
transmission lines, fiber-optic communication lines, cables located in the fluid flow [11], etc. The OHL
supports are assumed to be absolutely rigid.

An absolutely flexible system in the field of gravity with a linear density ρ0(s), moves in space under
the action of a distributed linear normal load Fn and a distributed linear tangent loadFτ . The deformation
of a flexible system is characterized by the degree of elongation λ = ds/ds0 = 1 + e, where ds0 and ds
are the lengths of the elements of the flexible system in an undeformed and deformed state, and e is the
relative elongation. For an element of a flexible system with mass dm, in accordance with the law of
conservation of mass, we have dm = ρ0ds0 = ρds.

2. THE METHOD AND CONSTRUCTION OF THE SOLUTION
The vector equation describing the motion of an elastic weighty flexible system under the action of

linear loads Fn, Fτ , tension T , in the field of gravity with acceleration of gravity g has the form

ρ0
∂2r

∂t2
=

∂T

∂s0
+ Fn + Fτ + gρ0. (2.1)

Let us consider the vector equation of motion in projections on the axis of the Cartesian coordinate
system x1x2x3, the acceleration g is directed down along the x3 axis, Fig. 1.

Let the angle between the element ds of the flexible system and the coordinate axes Ox1, Ox2, Ox3
be α, β, γ, respectively.

The distributed shear load with intensity Fτ acts along the element ds of the flexible system. The
effective normal load vector with intensity Fn makes an angle ϕ to the OAB plane. In addition, we
introduce the angle α1 between the Ox1 axis and the OAB plane. Given that

|Fn| = Fn, |Fτ | = Fτ , |T| = T, |g| = g,
∂2r

∂t2
=

∂v

∂t
,
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and projecting the vector equation of motion on the Cartesian coordinate axes, we have

ρ0
∂v1
∂t

=
∂

∂s0
(T cosα) − Fnλ cosϕ cos γ cosα1 + Fτλ cosα,

ρ0
∂v2
∂t

=
∂

∂s0
(T cosβ)− Fnλ cosϕ cos γ sinα1 + Fτλ cos β,

ρ0
∂ v3
∂ t

=
∂

∂s0
(T cos λ) + Fnλ cosϕ sin γ + Fτλ cos γ − ρ0g,

where v1, v2, v3 are the projections of the speed of the elements on the coordinate axes.
Since (∂x1)

2 + (∂x2)
2 + (∂x3)

2 = (λ∂s0)
2, then

cosα =
1

λ

∂x1
∂s0

, cos β =
1

λ

∂x2
∂s0

, cos γ =
1

λ

∂x3
∂s0

,

tanα1 =
∂x2
∂x1

=
( 1

λ

∂x2
∂s0

)( 1

λ

∂x1
∂s0

)−1
=

cos β

cosα
,

cosα1 =
cosα√

cos2 α+ cos2 β
, sinα1 =

cos β√
cos2 α+ cos2 β

.

In what follows, we omit the zero index in the s0 coordinate and understand s as the Lagrangian
coordinate (i.e., associated with a flexible system).

Given

cosα =
1

λ

∂x1
∂s

, cos β =
1

λ

∂x2
∂s

, cos γ =
1

λ

∂x3
∂s

,

then the equations of motion of the flexible system in the Cartesian coordinate system x1x2x3 will take
the form

ρ0
∂v1
∂t

=
∂

∂s

( T

λ

∂x1
∂s

)
− Fn cosϕ cosα1

∂x3
∂s

+ Fτ
∂x1
∂s

,

ρ0
∂v2
∂t

=
∂

∂s

( T

λ

∂x2
∂s

)
− Fn cosϕ sinα1

∂x3
∂s

+ Fτ
∂x2
∂s

, (2.2)

ρ0
∂v3
∂t

=
∂

∂s

( T

λ

∂x3
∂s

)
+ Fnλ cosϕ sin γ + Fτ

∂x3
∂s

− ρ0g.

The equations of motion in the vertical plane x1x2, the x2 axis is directed vertically. In this case, for
(2.2) we must assume

α =
π

2
, α1 =

π

2
, γ + β =

π

2
, ϕ = 0, sin γ = cos β =

1

λ

∂x2
∂s

and replace the indices 2 → 1 and 3 → 2

ρ0
∂v1
∂t

=
∂

∂s

( T

λ

∂x1
∂s

)
− Fn

∂x2
∂s

+ Fτ
∂x1
∂s

,

ρ0
∂v2
∂t

=
∂

∂s

( T

λ

∂x2
∂s

)
+ Fn

∂x1
∂s

+ Fτ
∂x2
∂s

− ρ0g,

(2.3)

where v1 and v2 are the projections of the velocity vector V on the x1, x2 coordinate axis.
The equations of motion (2.3) can also be written in compact form

ρl
∂vk
∂t

=
∂

∂s

( T

λ

∂xk
∂s

)
+ (−1)kFn

∂x3−k

∂s
+ Fτ

∂xk
∂s

− ρlg(k − 1), (2.4)

where k = 1, 2; ρl is the linear density.
The components of the aerodynamic forces acting on a flexible system are determined by the

equations [12]

Fn =
ρU2

∞
2

d(cn sin
2 α+ cτ sinα), Fτ =

ρU2
∞
2

dcτ cos
2 α, (2.5)
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where U∞ is the velocity of the unperturbed flow; ρ is the density of the medium; α is the angle of attack
of an element of a flexible system; d is the conditional diameter; cn=1.8446, cτ =0.0554 are aerodynamic
flow coefficients, as for cables.

Transverse vibrations of flexible systems affect the normal components of linear efforts Fn: when the
element of the flexible system moves against the flow, this component increases and decreases when it
moves along the flow. With this in mind, the recount can be carried out according to the equation [13]

Fn(s, t) = F 0
n(s, t)

[
1− μ

Vn

U∞

]2
sign

[
1− μ

Vn

U∞

]
, (2.6)

where Vn is the normal component of the velocity of an element of a flexible system; μ is the aerodynamic
damping coefficient, this coefficient significantly affects the dynamics of loading.

The equations of motion (2.2) are solved in a dimensionless form by introducing the following
dimensionless parameters:

v̄k =
vk
U∞

, fn = 2
Fn

ρU2
∞L0

, fτ = 2
Fτ

ρU2
∞L0

, ρ̄ = ρ
L0

M0
,

T̄ =
T

T0
, Ē =

E

T0
, τ = t

U∞
L0

, ḡ = g
L0

U2
∞

,

where vk is the speed of the wire element; L0 is the wire span; M0 = ρ0L0 is the wire span mass; E is
the reduced modulus of elasticity of the wire material; T0 = ρU2

∞L2
0/2 is the characteristic tension of the

wire; t is the time; AN = ρL3
0/(2M0) is the Newton parameter. Below in the notation, dashes over the

parameters are omitted.

The equations are supplemented by the physical relations T = T (e), e ≥ 0 under tension and e < 0

under compression (in particular, with the linear law T = Ee), the kinematic relations

∂xk
∂τ

= vk, (2.7)

and the geometric relation

( ∂x1
∂s

)2
+

( ∂x2
∂s

)2
+

( ∂x3
∂s

)2
= λ2, λ = 1 + e. (2.8)

The initial and boundary conditions for the wire are written in the form

xk(0, s) = fk(s), vk(0, s) = ϕk(s), xk(τ, 0) = f◦
k (τ), vk(τ, 0) = ϕ0

k(τ),

xk(τ, sl) = f s
k(τ), vk(τ, sl) = ϕs

k(τ), k = 1, 2, 3.
(2.9)

3. THE DIFFERENCE SCHEME FOR SOLVING THE PROBLEM

The system of equations (2.2), (2.5)–(2.9) is solved by the finite difference method, a discrete region
is introduced into consideration:

si = iΔs, τn = nΔτ (n = 0, 1, . . . , τ/Δτ − 1, i = 1, 2, . . . , s/Δs).
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Using for approximation of derivatives the central differences on a grid shifted by a half step and an
explicit finite-difference scheme, we can represent equations (2.2) in a dimensionless form as

v
n+1/2
1,i = v

n−1/2
1,i ++

ΔτAN

ρ0Δs

{[
T n
i+1/2

xn1,i+1 − xn1,i
Δsλn

i+1/2

− T n
i−1/2

xn1,1 − xn1,i−1

Δsλn
i−1/2

]

− 1

2Δs

[
(fn)

n−1/2
i+1/2 (x

n
3,i+1 − xn3,i) + (fn)

n−1/2
i−1/2 (x

n
3,i − xn3,i−1)

]
cosϕ cosα1

+
1

2Δs

[
(fτ )i+1/2(x

n
1,i+1 − xn1,i) + (fτ )

n−1/2
i−1/2 (x

n
1,i − xn1,i−1)

]}
,

v
n+1/2
2,i = v

n−1/2
2,i +

ΔτAN

ρ0Δs

{[
T n
i+1/2

xn2,i+1 − xn2,i
Δsλn

i+1/2

− T n
i−1/2

xn2,1 − xn2,i−1

Δsλn
i−1/2

]

− 1

2Δs

[
(fn)

n−1/2
i+1/2 (x

n
3,i+1 − xn3,i) + (fn)

n−1/2
i−1/2 (x

n
3,i − xn3,i−1)

]
cosϕ sinα1

+
1

2Δs

[
(fτ )

n−1/2
i+1/2 (x

n
2,i+1 − xn2,i) + (fτ )

n−1/2
i−1/2 (x

n
2,i − xn2,i−1)

]}
,

v
n+1/2
3,i = v

n−1/2
3,i +

ΔτAN

ρ0Δs

{[
T n
i+1/2

xn3,i+1 − xn3,i
Δsλn

i+1/2

− T n
i−1/2

xn3,1 − xn3,i−1

Δsλn
i−1/2

]

+
1

2

[
λn
i+1/2(fn)

n−1/2
i+1/2 + λn

i−1/2(fn)
n−1/2
i−1/2

]
cosϕ sin γ

+
1

2Δs

[
(fτ )

n−1/2
i+1/2 (x

n
3,i+1 − xn3,i) + (fτ )

n−1/2
i−1/2 (x

n
3,i − xn3,i−1)

]}
−Δτ · g.

(3.1)

Here

cosα =
1

2

[ xn1,i+1 − xn1,i
Δsλn

i+1/2

+
xn1,1 − xn1,i−1

Δsλn
i−1/2

]
, cos β =

1

2

[ xn2,i+1 − xn2,i
Δsλn

i+1/2

+
xn2,i − xn2,i−1

Δsλn
i−1/2

]
,

cos γ =
1

2

[ xn3,i+1 − xn3,i
Δsλn

i+1/2

+
xn3,i − xn3,i−1

Δsλn
i−1/2

]
.

The results of solving the problem at the integration step q serve as initial and boundary conditions
for the next integration step.

An explicit computational scheme, along with advantage, also has a drawback: high-frequency
oscillations of the solution appear behind the wave front. To smooth solutions, we use element velocity
corrections:

v̄k = vk + β
∂2vk
∂s2

, (3.2)

where β is the velocity correction coefficient, which is selected on the basis of numerical experiments.
In the difference representation, the adjustment (3.2) has the form

v̄
n+1/2
k,i = v

n+1/2
k,i + β

(v
n+1/2
k,i+1 − 2v

n+1/2
k,i + v

n+1/2
k,i−1 )

Δs2
. (3.3)

The physical ratio is taken in the form of the Kelvin–Voigt equation

T = E · e+ η · ė, (3.4)

where ė is the strain rate, η is the coefficient of internal friction in the material.
The OHL rupture occurs when the tension in element i at time τn exceeds the allowable rupture

tension in material T n
i ≥ [T ], or rupture occurs as a result of mechanical damage. Let a line rupture

occur in the element between the nodes il and ir = il + 1, and the tension between these nodes instantly
assumes a zero value of T (il) = 0. To calculate according to equation (3.1), we add an extended grid for
the left span il+1 and for the right span ir−1, respectively

v
n+1/2
k,il+1

= v
n+1/2
k,il

, v
n+1/2
k,ir−1

= v
n+1/2
k,ir

. (3.5)
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Thus, we obtain smooth solutions of the second derivatives for nodes (3.1) from i = 2 to i = il for the
left span and from i = ir to i = int(s/Δs) for the right span.

The coordinates of the nodal points of the difference grid, or the kinematic relations are written in the
form

xn+1
k,i = xnk,i +Δτ v̄

n+1/2
k,i . (3.6)

A necessary condition for the convergence of a numerical solution in an explicit scheme to the
solution of a differential equation is the Courant–Friedrichs–Levy condition. For a material with a linear
characteristic of elasticity E, this condition is written in the form Δτ ≤ Δs

√
ρ0/E, or

Δτ = αkΔs

√
ρ0
E

, (3.7)

where αk is the Courant coefficient.
And so, end-to-end calculations are carried out according to equations (3.1)–(3.7). In the algorithm

of a dynamic problem, the integration step (3.7) ensures the stability of the solution. Aerodynamic
damping of the medium (2.6) and internal friction in the material (3.4) improve the stability of the
numerical algorithm.

The equilibrium state of a flexible system is obtained as the ultimate solution to a dynamic problem.
The choice of the coefficient of speed correction and the stability coefficient of the numerical solution
is carried out by conducting numerical experiments on model problems. For numerical calculations
of the OHL dynamics, one can use the results of modeling the dynamics of tape parachutes in a
stream [13, p. 52–61]: the coefficient μ in the equation (2.6) is selected in the range of 0.1÷ 0.2; and
β = (0.015 ÷ 0.03)Δs2 in equation (3.3) and αk = (0.5 ÷ 1) in equation (3.7).

4. THE RESULTS OF TEST STUDIES

Let us consider separately the effect of wind load and weight force.

4.1. The Effect of Wind Load

A wind load of intensity p acts in the horizontal plane Ox1x2. The pressure drop due to wind acts
normal to the deformable line and is evenly distributed. In this case, the deformed state of the line with
two fixed ends is determined by the following approximate equations [11]

r =
l

2 sinϕ
, ϕ =

( 3pl

E

)1/3[
1 +

( 3pl

E

)2/3 1

60

]
, T = pr, x1 = r

[
1−

√
1−

( l

2r

)2]
, (4.1)

where l is the span; 2ϕ is the central angle of the circular arc; r is the radius of the circle; T is the tension;
x1 is the maximum deflection.

The relative error of the approximate solution (4.1) is:

δ < 6
( ϕ4

7!

)(
1− ϕ2

20

)−1
.

We use solution (4.1) for testing the effect of the wind load in numerical calculations.
Calculations according to (4.1): let the linear density of electric wires be ρ = 0.5 [kg/m], and the

icing density ρ0 = ρ. The total density is ρ= 1.0 [kg/m]; l = 160 [m]; E = 80734 · g [H] is the modulus of
elasticity; wire diameter d=0.01553 [m]; wind speed V∞=20m/c; linear wind load p=ρaV

2
∞d/2 [H/m2].

Calculations according to (4.1) give: ϕ=0.132; r=3.793 , x1=0.03309375, and numerical calculations
according to (3.1)–(3.7) at τ = 24.7 give x1 = 0.03310, Fig. 2, a. The relative error is less than
θ = 0.007%. Moreover, the error of the most approximate solution does not exceed δ = 0.004× 10−2 %.
Maximum deflection x1 = 0.0543 at τ = 0.29.
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Fig. 2.

Fig. 3.

4.2. The Effect of Weight
And to analyze the accuracy of numerical calculations of the influence of weight, which acts along

the Ox3 axis in the Ox2x3 plane, we can use the solution [7]. The equation of the deformed chain line is
determined by

x3 = ρ0g
1 + ε

Eε

x22 − lx2
2

. (4.2)

The maximum deflection in the middle of the span is

x3 = −l2ρ0g
1 + ε

Eε

1

8
. (4.3)

where the relative elongation is determined by the expression

ε =
3

√
γ

2
+

[( γ

2

)2
−

( γ

3

)3]1/2
+

3

√
γ

2
−

[( γ

2

)2
−

( γ

3

)3]1/2
(4.4)

with the parameter γ = (ρ0g)
2l2/(24E2).

Calculations according to (4.3), (4.4) give γ=0.16365× 10−6 and ε=0.0054798 and x3=−0.04546.
In Fig. 2, b, the calculations according to (3.1-3.7) x3 = −0.04540 at time τ = 32.6. In this case, the

relative error of the error in comparison with the exact solution is θ ≈ 0.12 %. The maximum deflection
x3 = 0.0753 is realized at time τ = 0.21.
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Fig. 4.

4.3. Calculation of the Spatial Shape of OHL Under the Influence of a Combined Wind and Weight
Load

We will take the initial state of the flexible system at time τ = 0 in the form of a straight line (which
approaches the optimal weight of the OHL). From this state, the system is deformed to the value of
maximum deflections in the vertical plane x3 = −0.0717 (Fig. 3, a) and x1 = −0.0279 in the horizontal
plane (Fig. 3, b) at time τ = 0.204. After time τ = 40.75, the system reaches an equilibrium state and
the maximum deflections are x3 = −0.0433 and x1 = −0.0169, Figs. 3, a, b.

4.4. OHL Movements after a Gap in the Middle of the Span.
In the algorithm for calculating the overhead line movement after a break, the following assumptions

are used: a) for a steady mode of influence of wind and weight load, wire breakage, for example, occurs
in the middle of the span; b) at the moment of falling to the ground, the influence of the wind load on
the wire ceases; c) when falling to the ground, a partially elastic impact occurs and it is assumed in the
calculations that the kinetic energy of the rebound is 36% of the energy of the vertical impact. Figs. 4, a,
b shows the results of calculating the movement after a wire break in the middle of the span at time
instants τ = 40.85; 41.87; 50.93.

4.5. The Effect of a Gust of Wind.
Low-frequency oscillations of OHL (frequencies of the order of 1Hz) occur due to a gust of wind.

Oscillations can occur with an amplitude above a meter [14], [15], [16]. In these works, it is noted that
the mechanism for the appearance of oscillations is not always clear.

Consider a gust of wind that acts in the horizontal plane Ox1x2 with a sinusoidal law of change

p(τ) = q0d
∣∣∣ sin

( πn

δ

)∣∣∣, (4.5)

where q0 is the pressure head at wind speed V0, d is the diameter of the wire, n = τ/Δτ , τ is the current
time, Δτ is the integration step, n/δ = 1, 2, 3, . . . are the zeros of the sine wave.

In Fig. 5, a, b, d, the results of calculating the movement of the midpoint of the span in accordance
with the algorithm (3.1)–(3.7) are presented. The initial state of the span at time τ = 0 is taken as
a straight line. From this state, under the influence of the weight of the wire, a transition process is
realized to the form of an equilibrium state (Fig. 5, a). The maximum deflection is x3 = −4.54 × 10−2.
At time τ = 4, a gust of wind acts in accordance with (4.5). Oscillations of the midpoint of the wire are
given in the horizontal plane, Fig. 5, b.

Consider the following option, the wind pressure changes according to the law (4.5) at time τ ≥ 4
and coincides with the movement at the speed of the wire elements νx1i ≤ 0, and with the movement of
the wire element νx1i > 0 it is zero. That is, a gust of wind contributes to the swaying of the wire in the
horizontal plane Ox1x2. These calculation results are shown in Fig. 5, d. The amplitude of oscillation
in the Ox1x2 plane increases. These vibrations are reflected in the vibrations of the wire in the vertical
plane Ox2x3 and the occurrence of vibrations such as "dancing wires".

MECHANICS OF SOLIDS Vol. 54 No. 6 2019



POWER LINE DEFORMATION DYNAMICS 911

Fig. 5.

5. THE THERMOELASTIC PROBLEM OF OHL
In the autumn-winter-spring period, favorable conditions are created for the formation of ice deposits

on power lines. To combat this dangerous phenomenon, various technologies are developed and used,
including those based on heating wires to melt ice [1, 2].

With the formation of ice, the mass of the wire increases and the system goes into a new equilibrium
deformed state. When the heating is turned on, the wire sags even more due to temperature elongation.
After warming up, the icing is dropped, the temperature drops to ambient temperature, and the shape of
the wire goes back to equilibrium, which corresponds to loading only by the weight of the wire itself.

5.1. The Dimensionless Heat Equation
The dimensionless heat equation for a linear element has the form

ut = uss + f, (5.1)

where 0 < s < 1, 0 < t < tk, f is the density of heat sources.

5.2. The Heat Equation in the Difference Representation

Let ϕj
i = f j

i , si = i · h, i= 0, 1, 2, . . . , N , h= 1/N be the step of the partition along the Lagrangian
coordinate, N be the number of partitions of the span, ti = j · τ , j = 0, 1, 2, . . . , L, τ = tk/L be the
step of integration over time, and L be the number of partitions of the time interval. For (5.1) we have

uj+1
i =

(
1− 2

τ

h2

)
uji +

τ

h2
(uji+1 + uji ) + τϕj

i . (5.2)

The stability of the circuit in the grid norm for the integration step requires the fulfillment of the
condition τ = αh2/2, 0 < α ≤ 1.

5.3. Approximation of Boundary Conditions
Approximation can be carried out in two ways. Option 1. To approximate the boundary conditions,

we use the quadratic Lagrange polynomial over three points of the segment. For the first time derivatives
at the ends of the segment, we have

u
(1)
0τ =

1

2τ
(−3uj+1

0 + 4uj1 − uj2), u
(1)
Nτ =

1

2τ
(3uj+1

N + 4ujN−1 − ujN−2).
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And for the second derivatives with respect to the coordinate at the borders, we have

u
(2)
0h =

1

h2
(uj0 − 2uj1 + uj2), u

(2)
Nh =

1

h2
(ujN − 2ujN−1 + ujN−2).

Then for the boundaries at the integration step (j + 1) we have

uj+1
0 = − 2τ

3h2
uj0 +

4

3
(1 +

τ

h2
)uj1 −

1

3
(1 + 2

τ

h2
)uj2 + 2τϕj

i ,

uj+1
N =

2τ

3h2
ujN +

4

3
(1− τ

h2
)ujN−1 −

1

3
(1− 2

τ

h2
)ujN−2 + 2τϕj

i .

(5.3)

Option 2. For the boundaries, we use the linear approximation

uj+1
0 = (1 + 2

τ

h2
)uj0 +

τ

h2
(uj2 − 2uj1) + τϕj

0,

uj+1
N = (1 + 2

τ

h2
)ujN +

τ

h2
(ujN−2 − 2ujN−1) + τϕj

N .
(5.4)

5.4. Test Calculations of Thermal Conductivity Using Both Options
For calculations, we take the following initial data: initial wire length l=160 [m]; the linear expansion

coefficient of the aluminum wire is αt = 23.8 × 10−6 [1/K]; elasticity modulus E = 6.25 × 1010 [H/m2]

[4]; wire diameter d = 0.0147 [m]; wire material density ρ = 2700 [kg/m3]; thermal capacity of mass unit
c = 0.9 [kJ/(kg K)]; thermal conductivity coefficient k = 209 [Vt/(mK)]; K is the Kelvin temperature.
The number of elements N = 50.

The insulated wire is divided into two parts. Instantly the left span is heated to 200◦ C (473.15K), and
the right span has ambient temperature of minus 5◦ C. In a dimensionless form, these temperatures will
be 1.7322 and 0.9817. The redistribution of temperature along the length and time occurs without heat
loss and the process continues to the temperature of equalization to (1.7322 + 0.9817)× 0.5 = 1.35695,
which corresponds to 370.65089K.

Heat conductivity calculations are carried out according to (5.2) when approximating the boundary
conditions according to option 1 and option 2 and compare with the exact value 1.35695.

According to option 1 (approximation of the boundary conditions by a quadratic Lagrange polyno-
mial), a numerical calculation gives an equalization temperature of 1.36058 in 2.3 s.

For option 2 (linear approximation of the boundary conditions), the calculation gives 1.35689. Option
2 gives the best convergence.

5.5. Linear Thermal Expansion
The relative thermal expansion is

εt =
l2 − l1
l1

= αtΔu, (5.5)

where l1 and l2 are the initial and final lengths of the wire, and Δu = u2 − u1 is the temperature
difference, αt is the coefficient of linear expansion. The force arising in the wire due to thermal expansion
is determined by

T = Eεt
πd2

4
. (5.6)

Calculations based on the above accepted initial data give: relative thermal elongation εt = 24.4 × 10−4,
the force arising in the wire due to thermal elongation, respectively, T = 25.9 kN.

5.6. OHL Dynamics Taking into Account the Weight of the Wire,
the Weight of Icing and Thermal Conductivity

For example, let the icing density be equal to the density of the wire itself ρ0 = ρ, in practice it
can exceed it by several times. In accordance with the solution of the equation of motion, the wire
under the action of only its own weight at time t = 2.7 moves to the maximum deflection x3 = 3.4m
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Fig. 6.

(Fig. 6, a, line –�– , x3 = 0.021253), while the tension is T = 12kN, then as a result of the transition
process after about 30 seconds self-settles to the form of an equilibrium state with a maximum deflection
x3 = 2.3(x3 = 0.01438). A uniform mass of icing is superimposed on this form of the equilibrium state.
The system again reaches an equilibrium state with a mass of wire and icing; this state at time t = 51 is
shown in Fig. 6, b (line –•–). In this case, the maximum deflection is x3 = 2.95m (x3 = 0.01844) and
tension T = 9.8. It is believed that at time t= 51, 1/10 of the span is instantly heated to a temperature of
150◦ C, and this temperature is kept constant on this part and heats the rest of the span due to thermal
conductivity for 5 seconds. During this time, this temperature has time to spread and even out to 150◦ C
along the entire length. In this case, elongation occurs due to thermal expansion, Fig. 6, b (line –�–).
At the end of heating, the deflection reaches x3 = 6.20m (x3 = 0.03875), and the temperature tension
in the wire is 38.

After that, the mass of icing is considered to be dropped immediately and within one second the
temperature is equalized with the ambient temperature equal to minus 5◦ C. Further movement is
calculated, the system goes into a new equilibrium state with a maximum deflection x3 = 2.3m
(x3 = 0.01438) and a tension in the wire of 6.2 kN (this equilibrium state is shown in Fig. 6, a by a
solid line).

Note that a change in temperature over time is associated with the rate of change of temperature,
and a change in the movement of wire elements is associated with acceleration. Therefore, at the end of
the heating of the wire, the temperature is distributed almost uniformly along the length of the wire, and
the elastic elongations along the length are unsteady in nature, the elastic tension only aligns over time.
Therefore, at the end of heating, only the temperature tension can be more accurately estimated.

6. CONCLUSION
The equations of motion of a deformable power line in a spatial setting are obtained. A method for

calculating the dynamics of a power line in a spatial setting is developed. Numerical studies of OHL
loading by weight, wind and icing load were carried out. A method for calculating wire breakage and
the movement of parts after a breakage is proposed. A method has been developed for calculating the
thermoelastic problem during icing and melting of OHL. The mechanism of the appearance of oscillatory
motion such as “dancing wire” under the action of a variable wind load. The reliability of numerical
calculations for particular cases is verified by the obtained analytical solutions.
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