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Abstract—We survey the research on the inductive systems of C∗-algebras over arbitrary partially
ordered sets. The motivation for our work comes from the theory of reduced semigroup C∗-algebras
and local quantum field theory. We study the inductive limits for the inductive systems of Toeplitz
algebras over directed sets. The connecting ∗-homomorphisms of such systems are defined by
sets of natural numbers satisfying some coherent property. These inductive limits coincide up to
isomorphisms with the reduced semigroup C∗-algebras for the semigroups of non-negative rational
numbers. By Zorn’s lemma, every partially ordered set K is the union of the family of its maximal
directed subsets Ki indexed by elements of a set I . For a given inductive system of C∗-algebras over
K one can construct the inductive subsystems over Ki and the inductive limits for these subsystems.
We consider a topology on the set I . It is shown that characteristics of this topology are closely
related to properties of the limits for the inductive subsystems.
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1. INTRODUCTION

The paper is a survey of the results on the inductive systems of C∗-algebras presented in [1–5]. These
inductive systems are considered over arbitrary partially ordered sets.

The motivation for our work comes from several sources. On the one hand, these sources comprise
the papers [6–15] on the reduced semigroup C∗-algebras which are also called the Toeplitz algebras
and their inductive systems. Coburn [6, 7] and Douglas [8] studied the Toeplitz algebras for the
subsemigroups of the additive group of real numbers. Murphy [9, 10] considered the general case of
ordered groups. In particular, he studied the inductive systems of the Toeplitz algebras and proved
that the correspondence between ordered groups and Toeplitz algebras is a continuous functor. These
authors discovered that the isometric representations of semigroups possess the universal property. For
the case of the semigroup of all non-negative integers this property is also known as Coburn’s theorem
(see, for example, [16, theorem 3.5.18]). Using this theorem, the inductive sequences of the Toeplitz
algebras associated with arbitrary sequences of prime numbers are defined and studied in [1]. The results
of [1] are connected with the properties of mappings between the topological groups which are considered
in [17–23]. In [15] the authors constructed the inductive system making use of the reduced semigroup
C∗-algebra which is generated by the representation of the path semigroup for a partially ordered set.
On the other hand, the motivation comes from algebraic quantum field theory [24]. We recall that the
general framework of this theory is given by a covariant functor acting from a category whose objects are
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INDUCTIVE SYSTEMS OF C∗-ALGEBRAS 645

topological spaces with additional structures and its morphisms are structure preserving embeddings.
That functor takes its values in a category describing the algebraic structure of observables. The basic
tool of the algebraic approach to quantum fields over a spacetime is a net of C∗-algebras over a partially
ordered set defined as a suitable set of regions of the spacetime ordered under the inclusion. For the case
of a curved spacetime, nets containing C∗-algebras of quantum observables are studied in [25–27]. The
paper [28] is devoted to nets of C∗-algebras associated with nets over partially ordered sets consisting of
Hilbert spaces.

The present paper deals with covariant functors acting from categories associated to arbitrary
partially ordered sets into the category of unital C∗-algebras and their unital ∗-homomorphisms. As
is well-known, those functors are also called inductive systems over posets.

We begin by considering the inductive systems of Toeplitz algebras over directed sets. The connecting
∗-homomorphisms of such systems are defined by sets of natural numbers satisfying the factorization
equalities. The inductive limit of such an inductive system coincides up to an isomorphism with a
reduced semigroup C∗-algebra for a semigroup of non-negative rational numbers.

By Zorn’s lemma, every partially ordered set K can be represented as the union of the family {Ki}
of its maximal directed subsets indexed by elements of a set I. We consider a topology on the set I
generated by a neighbourhood system. For every index i ∈ I the original inductive system over K yields
naturally the inductive system of C∗-algebras over Ki and its inductive limit. Using these inductive
limits, we construct different types of C∗-algebras. In particular, for neighbourhoods of the topology
on the set of indices we deal with the C∗-algebras which are the direct products of limits for inductive
systems over the sets Ki. We survey properties of the above-mentioned topology and the C∗-algebras.
It is shown that there exists a connection between the topological and algebraic structures.

The paper is organized as follows. It consists of Introduction and five more sections. In Section 2,
after giving the necessary preliminaries on the inductive systems over arbitrary partially ordered sets and
their limits in the category of unital C∗-algebras, we recall some facts about the reduced semigroup C∗-
algebras for semigroups of rational numbers. Section 3 is devoted to the inductive systems of Toeplitz
algebras over directed sets. The connecting ∗-homomorphisms of those systems are defined by arbitrary
sets of natural numbers satisfying the factorization equalities. Section 4 is concerned with the topology
on the index set I. The set I is endowed with the topology by means of a neighbourhood system. We
list some properties of this topology and give examples of such topological spaces. Section 5 deals
with inductive systems of arbitrary unital C∗-algebras over partially ordered sets. For a given inductive
system over a poset K we consider the inductive subsystems over the maximal directed subsets Ki

and their limits AKi . Using the C∗-algebras AKi and the neighbourhoods of the topology on I, we
construct a new inductive system of C∗-algebras over K and its inductive subsystems over Ki with
the limits denoted by BKi . Making use of properties of the topology on the index set I, we discuss the
relationship between the C∗-algebras AKi and BKi . In Section 6 we consider the inductive systems of
Toeplitz algebras over partially ordered sets. It is shown that the reduced semigroup C∗-algebras for the
semigroups of non-negative rational numbers are closely connected with such inductive systems.

The results presented in the paper were discussed at the conference “Mathematical Physics, Dy-
namical Systems, Infinite – Dimensional Analysis”, Dolgoprudny, 17–21 June, 2019. The authors are
grateful to the organizers of the conference, especially Professor Vsevolod Zh. Sakbaev, for hospitality.

2. PRELIMINARIES

Throughout the paper (K,≤) stands for a partially ordered set. In general, we do not assume that it
is a directed set. The category associated to this set is denoted by the same letter K. We recall that the
objects of this category are the elements of the set K, and, for any pair a, b ∈ K, the set of morphisms
from a to b consists of the single element (a, b) provided that a ≤ b, and is the void set otherwise.

Together with a partially ordered set (K,≤) we shall consider a covariant functor F from the category
K into the category of unital C∗-algebras and their unital ∗-homomorphisms. Such a functor is called
an inductive system in the category of C∗-algebras over the set (K,≤ ). It may be given by a system
(K, {Aa}, {σba}) satisfying the standard conditions in the definition of a covariant functor. In the sequel,
we shall write

F = (K, {Aa}, {σba}). (1)
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Here, {Aa|a ∈ K} is a family of unital C∗-algebras. For a unital C∗-algebra A its unit will be denoted by
IA. We also suppose that all morphisms σba : Aa −→ Ab, where a ≤ b, are embeddings of C∗-algebras,
i. e., unital injective ∗-homomorphisms. Recall that the diagram

commutes for all elements a, b, c ∈ K satisfying the conditions a ≤ b and b ≤ c, that is, the following
equality holds:

σca = σcb ◦ σba. (2)

It is worth recalling that for each element a ∈ K the morphism σaa : Aa −→ Aa is the identity mapping.
Further, let us consider the family of all upward directed subsets of the set (K,≤). Making use of

Zorn’s lemma, one can easily prove the following statement.
Lemma 1. Let (K,≤) be a partially ordered set. Then the following equality holds:

K =
⋃

i∈I
Ki, (3)

where {Ki|i ∈ I} is the family of all maximal upward directed subsets of (K,≤).
Moreover, for every i ∈ I and a ∈ Ki the set {b ∈ K|b ≤ a} is a subset of Ki.
For each index i ∈ I we may consider the inductive system Fi = (Ki, {Aa}, {σba}) over the maximal

upward directed set Ki.
The simplest example of the inductive system Fi is that in which {Aa|a ∈ Ki} is a net of C∗-

subalgebras of a given C∗-algebra A. By this, one means that each Aa is a C∗-subalgebra containing
the unit IA, Aa ⊂ Ab and σba : Aa −→ Ab is the inclusion mapping whenever a, b ∈ Ki and a ≤ b. Given
such a net Fi, the norm closure of the union of all Aa is itself a C∗-subalgebra of A that is called the
inductive limit of the net Fi.

We recall the definition and some facts concerning the inductive limits for inductive systems of C∗-
algebras (see, for example, [29, Section 11.4]).

The inductive limit of the inductive system Fi = (Ki, {Aa}, {σba}) is a pair (AKi , {σKi
a }), where

AKi is a C∗-algebra and {σKi
a : Aa → AKi |a ∈ Ki} is a family of unital injective ∗-homomorphisms

such that the following two properties are fulfilled [29, Proposition 11.4.1]:
1) For every pair elements a, b ∈ Ki satisfying the condition a ≤ b the diagram

is commutative, that is, the equality for mappings

σKi
a = σKi

b ◦ σba (4)

holds. Moreover, we have the following equality:

AKi =
⋃

a∈Ki

σKi
a (Aa), (5)

where the bar means the closure of the set with respect to the norm topology in the C∗-algebra AKi .
2) The universal property. If B is a C∗-algebra, ψa : Aa −→ B is an injective ∗-homomorphism for

each a ∈ Ki, and the conditions analogous to those in (4) and (5) are satisfied, i.e., the diagram
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commutes for each pair a, b ∈ Ki satisfying the condition a ≤ b and the equality

B =
⋃

a∈Ki

ψa(Aa)

holds, then there exists a unique ∗-isomorphism θ from AKi onto B such that the diagram

is commutative for every a ∈ Ki, that is, the equality ψa = θ ◦ σKi
a holds. The inductive limit

(AKi , {σKi
a }) of the inductive system Fi is denoted as follows:

(AKi , {σKi
a }) := lim−→Fi.

The limit C∗-algebra AKi itself is often called the inductive limit of the inductive system Fi . For this
algebra we also use notation

A
Ki := lim−→Fi. (6)

As is well-known, an inductive limit for an inductive system can always be constructed in the
category of unital C∗-algebras and their ∗-homomorphisms.

If we are given the covariant functor F , then we can construct the direct product for the inductive
limits of the functors Fi which is denoted by the symbol

MF :=
∏

i∈I
A
Ki =

{
(ai)

∣∣||(ai)|| = sup
i

||ai|| < ∞
}
. (7)

It is easy to check that the direct product MF is a unital C∗-algebra with respect to the pointwise
operations and the supremum norm. We say that the C∗-algebra contains information about all
inductive limits of subsystems over maximal directed subsets for inductive system (1).

Further, we recall the definition of the reduced semigroup C∗-algebras for semigroups in the additive
group of all rational numbers Q.

Assume that Γ is an arbitrary subgroup in Q. Let Γ+ := Γ ∩ [0,+∞) be the positive cone in the
ordered group Γ. As usual, the symbol l2(Γ+) stands for the Hilbert space of all square summable
complex-valued functions on the additive subgroup Γ+. The canonical orthonormal basis in the Hilbert
space l2(Γ+) is denoted by {eg|g ∈ Γ+}. That is, for all elements g, h ∈ Γ+, we set eg(h) = δg,h, where
δg,h = 1 if g = h, and δg,h = 0 if g 
= h.

Let us consider the C∗-algebra of all bounded linear operators B(l2(Γ+)) in the Hilbert space l2(Γ+).
For every element g ∈ Γ+, we define the isometry Vg ∈ B(l2(Γ+)) by

Vgeh = eg+h,

where h ∈ Γ+.
Definition 1. The C∗-subalgebra in the algebra B(l2(Γ+)) generated by the set {Vg|g ∈ Γ+} is

called the reduced semigroup C∗-algebra of the semigroup Γ+, or the Toeplitz algebra generated
by Γ+. It is denoted by C∗

r (Γ
+).

In the case when Γ is the group of all integers Z, we also denote the semigroup C∗-algebra
C∗
r (Z

+) by T and use the symbols T and T n instead of V1 and Vn, respectively, where n ∈ Z
+.

In the similar way a semigroup C∗-algebra can be defined for an arbitrary cancellative semigroup. As
is noted in [30, Section 2], a semigroup C∗-algebra is a very natural object. It is generated by the left
regular representation of a given semigroup.

The following lemma is an immediate consequence of Coburn’s theorem [16, Theorem 3.5.18]. It is
worth noting that a straightforward proof of this lemma is also given in [31].

Lemma 2. For every number n ∈ N, there exists a unique unital ∗-homomorphism of C∗-
algebras ϕ : T −→ T such that ϕ(T ) = T n. Moreover, ϕ is isometric.
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In the sequel, we abbreviate those self-homomorphisms of the Toeplitz algebra as follows:

ϕ : T −→ T : T �−→ T n.

Let M = (m1,m2,m3, ...) be an arbitrary sequence of positive integers. In what follows, we
shall consider the reduced semigroup C∗-algebra C∗

r (Q
+
M ) for the semigroup of non-negative rational

numbers

Q+
M =

{
m

m1 ·m2 · ... ·mn

∣∣∣m ∈ Z
+, n ∈ N

}
.

For necessary results in the theory of C∗-algebras we refer the reader, for example, to the books [16]
and [32, Ch. 4, § 7].

3. INDUCTIVE SYSTEMS OF TOEPLITZ ALGEBRAS OVER DIRECTED SETS

The notion of the inductive sequence of the Toeplitz algebras defined by an arbitrary sequence of prime
numbers is introduced in the paper [1]. In [4] this notion is generalized for the inductive systems of the
Toeplitz algebras over directed sets. The connecting ∗-homomorphisms of those systems are determined
by sets of natural numbers satisfying the factorization equalities. Here, we discuss the results on the
inductive limits of such systems.

Throughout the section we assume that (K,≤) is a directed set. Let us consider a set of natural
numbers

N = {nba ∈ N|a, b ∈ K,a ≤ b} (8)

such that the factorization equalities

nca = ncb · nba (9)

hold for all elements a, b, c ∈ K satisfying the conditions a ≤ b and b ≤ c. It follows immediately from (9)
that the equality naa = 1 is valid for every a ∈ K.

Further, using Lemma 2, for every number nba ∈ N we define the isometric ∗-homomorphism by the
formula

σba : T −→ T : T �−→ T nba. (10)

It is clear that equalities (2) are valid for all elements a, b, c ∈ K whenever the conditions a ≤ b and b ≤ c
hold, and for each a ∈ K the ∗-homomorphism σaa : Aa −→ Aa is the identity mapping. Thus we can
give the following definition of the inductive system of the Toeplitz algebras over a directed set defined by
a set of natural numbers satisfying the factorization equalities.

Definition 2. Let (K,≤) be a directed set and N be a set of natural numbers (8) satisfying (9).
An inductive system of C∗-algebras

F = (K, {Ta}, {σba}), (11)

where Ta = T for all a ∈ K and the connecting ∗-homomorphisms σba are given by (10), is called
the inductive system of Toeplitz algebras over K defined by N .

The inductive systems over subsets in (K,≤) that are constructed from the elements of inductive
system (11) will be called the inductive subsystems of (11).

We have the following result that generalizes Proposition 1 in [1].
Theorem 1. [4, Theorem 1] Let F be an inductive system of Toeplitz algebras over a directed

set K defined by a set of natural numbers N satisfying the factorization equalities. Then there
exists a semigroup of non-negative rational numbers Q

+
M such that

C∗
r (Q

+
M ) � lim−→F . (12)

To prove isomorphism (12) in the category of C∗-algebras we proceed as follows.
For an element a ∈ K we define the subset Ka in the directed set K by

Ka := {b ∈ K|a ≤ b}. (13)
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Obviously, the subset Ka is cofinal in K. Furthermore, together with set (13) we consider the inductive
system

(Ka, {Tb}, {σcb}) (14)

of Toeplitz algebras over Ka defined by the set

{ncb ∈ N |b, c ∈ Ka} . (15)

Using the universal property for inductive subsystem (14) defined by (15) one has immediately the
following property.

Lemma 3. For every element a ∈ K there exists an isomorphism between the inductive limits

lim−→(Ka, {Tb}, {σcb}) � lim−→(K, {Tb}, {σcb}) (16)

in the category of unital C∗-algebras and their unital ∗-homomorphisms.
The next step for proving isomorphism (12) is the construction of a totally ordered countable subset

Λa in the set Ka satisfying some additional properties. It is worth noting that the set Λa is finite or
infinite. For details of this construction we refer the reader to [4, Section 3]. We denote the elements of
Λa by cs, where s ∈ N, and consider the inductive sequence of Toeplitz algebras

(Λa, {Tcs}, {σctcs}) (17)

over the set Λa defined by the subset {ncb ∈ N |b, c ∈ Λa} in set (8). We note that sequence (17) is an
inductive subsystem of both inductive systems (11) and (14).

The following statement is an analog of Proposition 1 in [1].

Lemma 4. There exists a semigroup Q
+
M of non-negative rational numbers such that

the following isomorphism holds in the category of unital C∗-algebras and their unital ∗-
homomorphisms:

C∗
r (Q

+
M ) � lim−→ (Λa, {Tcs}, {σctcs}) . (18)

Making use of the universal property for inductive sequence (17) one obtains the following isomor-
phism of inductive limits.

Lemma 5. There exists an isomorphism between the inductive limits

lim−→ (Λa, {Tcs}, {σctcs}) � lim−→ (Ka, {Tb}, {σcb}) . (19)

in the category of unital C∗-algebras and their unital ∗-homomorphisms.
Finally, combining isomorphisms (16), (18) and (19), we get isomorphism (12), as claimed.

4. TOPOLOGY ON THE INDEX SET

In what follows, (K,≤) is an arbitrary partially ordered set that is not necessarily directed. By
Lemma 1, we have representation (3) of the set K as the union of all maximal upward directed subsets
Ki, i ∈ I .

In this section we consider the topology on the index set I which was introduced in [2, 3]. The
topological space I is closely related to properties of inductive limits for subsystems of an inductive
system over the set (K,≤). We describe the topology and give several examples of index sets supplied
with that topology.

First, let us recall briefly the definition of this topology and its properties. For every element a ∈ K
we define the subset Ua in the index set I by the formula

Ua := {i ∈ I|a ∈ Ki} .
The sets Ua, a ∈ K, possess the following properties [3, Lemma 1, Propositions 2 and 4]:

—If a, b ∈ K such that a ≤ b, then Ub ⊂ Ua;

—The family {Ua|a ∈ K} constitutes a base for a topology on the index set I;
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—For a ∈ K, the set Ka defined in (13) is upward directed if and only if the neighbourhood Ua is
an one-point set.

In the sequel, we denote by τ the topology on the index set I generated by the base {Ua|a ∈ K}. We
have the following statement on the topology τ .

Proposition 1 [3, Proposition 3]. The topological space (I, τ) is a T1-space.
This proposition immediately implies the corollaries.
Corollary 1. For every index i ∈ I the equality

⋂
a∈Ki

Ua = {i} holds.

Corollary 2. For every index i ∈ I the one-point set {i} is closed.
To demonstrate various properties of the topology τ we give examples of various topological spaces

(I, τ) which were constructed in [2, 3, 5].
The first example shows that (I, τ) may not be a Hausdorff space.
Example 1. On the plane we consider the set of points with integer coordinates

K := {(x, y)|x ∈ {−1; 0; 1}, y ∈ Z} .
A partial order ≤ on the set K is defined as follows:

(x1, y1) ≤ (x2, y2) :=

{
x1, x2 ∈ {−1; 1}, x1 = x2, y1 ≤ y2;

x1 ∈ {−1; 1}, x2 = 0, y1 < y2.

It is straightforward to check that the pair (K,≤) is a partially ordered set, which is not upward directed.
One has the representation of K as the union of maximal upward directed sets Ki indexed by the set

of all integers Z together with two symbols −∞ and +∞, that is, I = Z ∪ {−∞; +∞} :

K =

+∞⋃

i=−∞
Ki, where K−∞ := {(−1, y)|y ∈ Z} ; K+∞ := {(1, y)|y ∈ Z}

and Ki := {(0, i)}
⋃

{(x, y)|x ∈ {−1; 1}, y < i, y ∈ Z} for each i ∈ Z.

A base {U(x,y)|x ∈ {−1; 0; 1}, y ∈ Z} for the topology τ on the index set I consists of the sets of three
types, namely,

U(−1,y) := {−∞} ∪ {i ∈ Z|i > y};U(1,y) := {+∞} ∪ {i ∈ Z|i > y};U(0,y) := {y}.

Since any two neighbourhoods of indices −∞ and +∞ have a non-empty intersection the topological
space (I, τ) is not a Hausdorff space.

The second example yields a locally compact Hausdorff topological space (I, τ).
Example 2. As the set K we consider the lower half-plane without the axis y = 0, that is,

K = {(x, y)|x, y ∈ R, y < 0}.

We define a partial order ≤ on K as follows. Let us fix a positive number a ∈ R . Then we put

(x1, y1) ≤ (x2, y2) :=

{
x1 = x2 and y1 = y2;

y2 − y1 > a|x2 − x1|.

It is easily verified that the pair (K,≤) is a partially ordered set. Moreover, it is worth noting that this set
is not upward directed.

We have the representation of K as the union of maximal upward directed sets Ki indexed by the set
of all real numbers, that is, I = R :

K =
⋃

i∈R
Ki, where Ki := {(x, y) ∈ K| − y > a|i− x|} .
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Taking a point (x0, y0) ∈ K, one can easy see that

U(x0,y0) =
{
i ∈ R|x0 +

y0
a

< i < x0 −
y0
a

}
.

Thus, in this example the topology τ coincides with the natural topology on the set of real numbers
R which is non-discrete locally compact.

A slight modification of Example 2 allows us to build an example of a partially ordered set (K,≤)
such that I = Z and the topology τ is discrete. For this example we refer the reader to [3, Example 3].

The third example shows that the topological space (I, τ) may be compact.

Example 3. As the set K we consider the set of all closed arcs in the unit circle S1:

K :=
{
A ⊂ S1

∣∣A = [e2πix, e2πiy] or A = S1 \ (e2πix, e2πiy), where x, y ∈ [0, 1) and x < y
}
.

A partial order on K is defined in the following way: for A,B ∈ K we put A ≤ B ⇔ A ⊂ B.
It is easily verified that the pair (K,≤) is a partially ordered set. Moreover, it is worth noting that

this set is not directed. Indeed, take any x1, x2, x3, x4 ∈ [0, 1) such that x1 < x2 < x3 < x4. Then for
A = [e2πix1 , e2πix4 ] and B = S1 \ (e2πix2 , e2πix3) there is no arc C ∈ K such that A ≤ C and B ≤ C.

One has the representation of K as the union of maximal upward directed sets Kz indexed by the
points of the unit circle S1, that is, K =

⋃
z∈S1

Kz , where z = e2πix, x ∈ [0, 1), and

Kz :=
{
A ∈ K

∣∣A ⊂ S1 \ {z}
}
.

A base {UA|A ∈ K} for the topology τ on the index set I = S1 consists of the sets

UA =
{
z ∈ S1

∣∣A ∈ Kz

}
= S1 \A.

Thus, the elements of the base for the topology τ are all open arcs of the unit circle S1:
{
B ⊂ S1

∣∣B = (e2πix, e2πiy) or A = S1 \ [e2πix, e2πiy], where x, y ∈ [0, 1) and x < y
}
.

The topology τ coincides with the natural topology on the unit circle S1 that is compact.

5. INDUCTIVE SYSTEMS OF ARBITRARY C∗-ALGEBRAS OVER POSETS

This section deals with inductive systems consisting of arbitrary unital C∗-algebras over partially
ordered sets. We discuss the relation between the topological space (I, τ) introduced in the previous
section and properties of C∗-algebras which are naturally associated with an inductive system over
a partially ordered set in the category of unital C∗-algebras. In topological terms we give sufficient
conditions for the existence of isomorphisms between C∗-algebras. Moreover, it is shown that the
properties of the topological space (I, τ) are reflected in the structure of C∗-algebras.

We are given an inductive system (1), that is, F = (K, {Aa}, {σba}), where Aa is an arbitrary unital
C∗-algebra. For the partially ordered set K we consider union (3) of its maximal upward directed subsets
Ki indexed by a set I. Then for each index i ∈ I we can construct the inductive subsystem Fi of (1) over
Ki and its inductive limit AKi defined by (5).

Further, we take any a ∈ K and consider the direct product of C∗-algebras

Ba :=
∏

i∈Ua

A
Ki . (20)

We recall that for every pair a, b ∈ K satisfying the condition a ≤ b, we have the inclusion Ub ⊆ Ua

(see Section 4). Hence, the ∗-homomorphism τba : Ba −→ Bb between C∗-algebras given by the rule

τba(f)(j) = f(j) (21)

is well-defined. Here, we take f ∈ Ba and j ∈ Ub.
It is straightforward to check that we have the equality τca = τcb ◦ τba whenever a, b, c ∈ K such that

the both conditions a ≤ b and b ≤ c are fulfilled.
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Thus we have constructed the inductive system of C∗-algebras and their ∗-homomorphisms

(K, {Ba}, {τba}). (22)

Therefore, for each index i ∈ I we can consider the inductive subsystem (Ki, {Ba}, {τba}) of system (22)
and its inductive limit

(BKi , {τKi
a }) := lim−→(Ki, {Ba}, {τba}). (23)

The following theorem shows the relation between two inductive limits (6) and (23).
Theorem 2. [3, Theorem 1] For every index i ∈ I, the C∗-algebra AKi is isomorphic to a C∗-

subalgebra of BKi .
Using the topology τ on the index set, we can guarantee in some cases the existence of isomorphism

for inductive limits (6) and (23).
Theorem 3. [3, Theorem 2] Let i ∈ I be an isolated point in the topological space (I, τ). Then

there exists an isomorphism

A
Ki � B

Ki

in the category of unital C∗-algebras and their unital ∗-homomorphisms.
For the direct product containing information about all inductive limits of subsystems over maximal

directed subsets Ki for inductive system (22) we introduce the following notation:

M̂F :=
∏

i∈I
B

Ki . (24)

As consequences of Theorems 2 and 3, one has respectively the following statements forC∗-algebraic
direct products (7) and (24).

Corollary 3. The C∗-algebra MF is isomorphic to a C∗-subalgebra of M̂F .
Corollary 4. Let (I, τ) be a discrete topological space. Then there exists an isomorphism

MF � M̂F

in the category of unital C∗-algebras and their unital ∗-homomorphisms.
Further, it is shown that some properties of the topology τ shed light on the inner structure of the

above-mentioned C∗-algebras. We formulate the results on sufficient conditions for non-triviality of the
centers of the inductive limit BKi and the direct product M̂F .

Theorem 4. [3, Theorem 3] Let i ∈ I be a non-isolated point with a countable neighbourhood
base. Then the C∗-algebra BKi has a non-trivial center.

As a consequence of Theorem 4 and the definition of the C∗-algebra M̂F , we have the last statement
in this section.

Corollary 5. Let (I, τ) be a first-countable topological space without isolated points. Then the
C∗-algebra M̂F has a non-trivial center.

6. INDUCTIVE SYSTEMS OF TOEPLITZ ALGEBRAS OVER ARBITRARY POSETS

In this section we specify the results of previous sections to the case of the inductive systems over
partially ordered sets consisting of Toeplitz algebras.

Let K be an arbitrary partially ordered set. As above, we consider K as union (3) of its all maximal
upward directed subsets Ki, i ∈ I from Lemma 1.

We consider an inductive system

F = (K, {Ta}, {idba}) (25)

consisting of Toeplitz algebras, that is, Ta = T for all a ∈ K, and the bonding ∗-homomorphisms
iba : Ta −→ Tb are the identity mappings whenever a, b ∈ K and a ≤ b.

For each index i ∈ I we consider an inductive subsystem Fi = (Ki, {Ta}, {idba}) of system (25) over
the maximal directed set Ki .
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Let us construct inductive limits (6) of these inductive subsystems:

(T Ki , {idKi
a }) := lim−→Fi = lim−→(Ki, {Ta}, {idba}).

It is clear that one has the isomorphism T Ki � T in the category of C∗-algebras.
Further, we take any element a ∈ K and consider direct product (20) of C∗-algebras

Ba :=
∏

i∈Ua

T Ki .

Again, for every pair of elements a, b ∈ K such that the inclusion Ub ⊂ Ua holds, we define the ∗-
homomorphism τba : Ba −→ Bb by formula (21). Then we construct inductive system (22) and, for
each index i ∈ I, we consider the inductive subsystem (Ki, {Ba}, {τba}) and its inductive limit (23),
that is, the C∗-algebra BKi .

The following auxiliary result is valid. Its proof is based on the universal property for the inductive
limits in the category of C∗-algebras.

Lemma 6. Let i ∈ I be a non-isolated point with a countable neighbourhood base
{Uan |an ∈ Ki, n ∈ N}

satisfying the condition Ua1 ⊃ Ua2 ⊃ Ua3 ⊃ .... Let

(B, {τn}) := lim−→({Ban}, {τan+1an})
be the inductive limit of the inductive sequence

Ba1

τa2a1−→ Ba2

τa3a2−→ Ba3

τa4a2−→ ...,

where τan+1an(f)(j) = f(j) for f ∈ Ban and j ∈ Uan+1 . Then there exists an isomorphism of C∗-
algebras

B � B
Ki .

Using Lemma 6, Coburn’s theorem [16, theorem 3.5.18], [1, Proposition 1] and [33, Appendix L,
Lemma L.1.3], we obtain

Theorem 5. [5, Theorem 1] Let i ∈ I be a non-isolated point with a countable neighbourhood
base. Then for every sequence of natural numbers M = (m1,m2,m3, ...) there exists an injective
∗-homomorphism of C∗-algebras:

C∗
r (Q

+
M ) −→ BKi .

Let us consider a sequence of all natural numbers M = N. It is straightforward to check that the
following equality holds for semigroups of rational numbers:

Q
+
M = Q

+ := Q ∩ [0,+∞).

As a consequence of Theorem 5, we immediately have
Theorem 6. [5, Theorem 2] Let i ∈ I be a non-isolated point with a countable neighbourhood

base. There exists an injective ∗-homomorphism of C∗-algebras:

C∗
r (Q

+) −→ B
Ki .

Finally, we formulate the result that follows from Theorem 1.
Theorem 7. [4 Theorem 2] Let K be a partially ordered set and let {Ki|i ∈ I} be a family of all

maximal directed subsets in the set K. Let F be an inductive system of Toeplitz algebras over
K defined by a set of natural numbers N satisfying factorization equalities. Let Fi, where i ∈ I,

denote the inductive subsystem of F over the set Ki. Then there exists a family
{
Q

+
Mi

|i ∈ I
}

of

semigroups of non-negative rational numbers and an isomorphism between the direct products
of C∗-algebras

∏

i∈I
T Ki �

∏

i∈I
C∗
r (Q

+
Mi

)

in the category of unital C∗-algebras and their unital ∗-homomorphisms.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 4 2020



654 GUMEROV, LIPACHEVA

FUNDING
The research was funded by the subsidy allocated to Kazan Federal University for the state assign-

ment in the sphere of scientific activities, project no. 1.13556.2019/13.1.

REFERENCES
1. R. N. Gumerov, “Limit automorphisms of C∗-algebras generated by isometric representations for semigroups

of rationals,” Sib. Math. J. 59, 73–84 (2018).
2. R. N. Gumerov, E. V. Lipacheva, and T. A. Grigoryan, “On inductive limits for systems of C∗-algebras,”

Russ. Math. (Iz. VUZ) 62 (7), 68–73 (2018).
3. R. N. Gumerov, E. V. Lipacheva, and T. A. Grigoryan, “On a topology and limits for inductive systems of

C∗-algebras,” Int. J. Theor. Phys. (2019). https://doi.org/10.1007/s10773-019-04048-0.
4. R. N. Gumerov, “Inductive limits for systems of Toeplitz algebras,” Lobachevskii J. Math. 40, 469–478

(2019).
5. E. V. Lipacheva, “Embedding semigroup C*-algebras into inductive limits,” Lobachevskii J. Math. 40, 667–

675 (2019).
6. L. A. Coburn, “The C∗-algebra generated by an isometry,” Bull. Am. Math. Soc. 73, 722–726 (1967).
7. L. A. Coburn, “The C∗-algebra generated by an isometry. II,” Trans. Am. Math. Soc. 137, 211–217 (1969).
8. R. G. Douglas, “On the C∗-algebra of a one-parameter semigroup of isometries,” Acta Math. 128, 143–152

(1972).
9. G. J. Murphy, “Ordered groups and Toeplitz algebras,” J. Oper. Theory 18, 303–326 (1987).

10. G. J. Murphy, “Simple C∗-algebras and subgroups of Q,” Proc. Am. Math. Soc. 107, 97–100 (1989).
11. G. J. Murphy, “Toeplitz operators and algebras,” Math. Z. 208, 355–362 (1991).
12. M. A. Aukhadiev, S. A. Grigoryan, and E. V. Lipacheva, “Operator approach to quantization of semigroups,”

Sb. Math. 205, 319–342 (2014).
13. E. V. Lipacheva and K. H. Hovsepyan, “The structure of C*-subalgebras of the Toeplitz algebra fixed with

respect to a finite group of automorphisms,” Russ. Math. (Iz. VUZ) 59 (6), 10–17 (2015).
14. E. V. Lipacheva and K. H. Hovsepyan, “Automorphisms of some subalgebras of the Toeplitz algebra,” Sib.

Math. J. 57, 525–531 (2016).
15. S. A. Grigoryan, T. A. Grigoryan, E. V. Lipacheva, and A. S. Sitdikov, “C∗-algebra generated by the path

semigroup,” Lobachevskii J. Math. 37, 740–748 (2016).
16. G. J. Murphy, C∗-Algebras and Operator Theory (Academic, New York, 1990).
17. S. A. Grigoryan, R. N. Gumerov, and A. V. Kazantsev “Group structure in finite coverings of compact

solenoidal groups,” Lobachevskii J. Math. 6, 39–46 (2000).
18. R. N. Gumerov, “On finite-sheeted covering mappings onto solenoids,” Proc. Am. Math. Soc. 133, 2771–

2778 (2005).
19. R. N. Gumerov, “On the existence of means on solenoids,” Lobachevskii J. Math. 17, 43–46 (2005).
20. S. A. Grigoryan and R. N. Gumerov, “On the structure of finite coverings of compact connected groups,”

Topol. Appl. 153, 3598–3614 (2006).
21. R. N. Gumerov, “Weierstrass polynomials and coverings of compact groups,” Sib. Math. J. 54, 243–246

(2013).
22. R. N. Gumerov, “Characters and coverings of compact groups,” Russ. Math. (Iz. VUZ) 58 (4), 7–13 (2014).
23. R. N. Gumerov, “Coverings of solenoids and automorphisms of semigroup C*-algebras,” Uch. Zap. Kazan.

Univ., Ser.: Fiz.-Mat. Nauki 160, 275–286 (2018).
24. R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer Texts and Monographs in

Physics, 2nd ed. (Springer, Berlin, Heidelberg, 1996).
25. G. Ruzzi, “Homotopy of posets, net-cohomology and superselection sectors in globally hyperbolic space-

times,” Rev. Math. Phys. 17, 1021–1070 (2005).
26. G. Ruzzi and E. Vasselli, “A new light on nets of C∗-algebras and their representations,” Commun. Math.

Phys. 312, 655–694 (2012).
27. E. Vasselli, “Presheaves of symmetric tensor categories and nets of C∗-algebras,” J. Noncommut. Geom. 9,

121–159 (2015).
28. S. A. Grigoryan, E. V. Lipacheva, and A. S. Sitdikov, “Nets of graded C∗-algebras over partially ordered

sets,” St. Petersburg Math. J. 30, 901–915 (2019).
29. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 2: Advanced

Theory (Academic, London, 1986).
30. X. Li,“Semigroup C∗-algebras,” arXiv: 1707.05940 (2019).
31. R. N. Gumerov, “On norms of operators generated by shift transformations arising in signal and image

processing on meshes supplied with semigroups structures,” IOP Conf. Ser.: Mater. Sci. Eng. 158, 012042
(2016). http://china.iopscience.iop.org/article/10.1088/1757-899X/158/1/012042/pdf.Accessed 2019.

32. A. Ya. Helemskii, Banach and Locally Convex Algebras (Oxford Sci., Clarendon, New York, 1993).
33. N. E. Wegge-Olsen, K-Theory and C∗-Algebras. A Friendly Approach (Oxford Univ. Press, Oxford, New

York, Tokyo, 1993).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 41 No. 4 2020


