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Abstract—A design and manufacturing process for composite fittings (a part of a truss structure of 
aircraft) is discussed. Intersecting tubular rods are connected via ruled surfaces such as a hyperbolic 
paraboloid. A mathematical model of X-fitting surface is developed, and numerical simulation of 
the fitting is performed to optimize its geometry. Due to the thing that interface surface is ruled, 
reasonable composite application and, as a result, high weight efficiency of the structure may be 
achieved. 
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INTRODUCTION  

Truss, lattice and frame structures are applied in spacecraft structures [1–8] quite often. Their main 
elements are tubular rods and fittings connecting those rods. To achieve better weight efficiency, 
a transition from metals to composites takes place. Spacecraft structures should meet a set of requirements 
in strength, stiffness and thermal stability. These requirements are met by selection of components and 
a reinforcement pattern. In this case, selection of reinforcement patterns is a key to success in ensuring 
the aforementioned properties.  

Reinforcement patterns for the tubular rods may be easily generated using the existing methods  
[9–11]. There is also a range of reliable processes for manufacturing of composite tubular rods [12–14]. 

Design of an optimum reinforcement pattern for fittings is a different issue. Normally, fittings are parts 
where two or more tubular rods intersect (Fig. 1). 

 

 

Fig. 1. 
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There is a wide range of fittings covered in the literature [15–21]. There are a few methods of 
manufacturing composite fittings, including lay-up [22–24], winding [25–27], and braiding [28–33]. 
Fittings, obtained using these methods, have irregular reinforcement patterns of the interface between 
tubular rods. This irregularity presents problems when performing design and strength computations, as it 
is very difficult to determine physical and mechanical properties of a part. It is also known that efficiency 
of composites depends significantly on the alignment of reinforcement pattern with applied forces. If they 
are not aligned, load-bearing capacity of a composite structure decreases. A composite structure, where 
all fibers are linear or have insignificant curvature, is considered to have the best reinforcement. 

The aim of this study is to find the design and the process for fitting manufacturing that would provide 
the maximum weight efficiency due to reinforcement pattern. Reinforcement with maximum percentage 
of linear fibers in tubes intersection area is studied. To implement this idea, it is suggested to create 
surfaces in rods intersection area that would look like hyperbolic paraboloids. As is well known, 
a hyperbolic paraboloid is a ruled surface, i. e. it provides a possibility to design structures with linear 
reinforcement (Fig. 2) [34]. Presumably, it will provide weight decrease due to reasonable integration of 
reinforcement pattern. 

 

 

Fig. 2. 

A set of issues has to be addressed to implement the idea of reinforcement along the surface of 
a hyperbolic paraboloid (or hypar): 

—create reinforcement patterns to cover the saddle-shaped surface based on linear surfaces such as 
hypar; 

—study the impact of bending radius on the weight efficiency of the X-fitting; 
—develop a mathematical model of the interface between the saddle-shaped surface and tubular rods; 
—develop a computer model of a fitting with hypar-type surfaces; 
—study the impact of the parameters of a hypar on the evenness of the interface between the surface 

and the tubular rods; 
—select optimum parameters of a hypar based on the requirements of minimum mass and even 

interface; 
—develop a process of X-fitting manufacturing. 

IMPACT OF X-FITTING  INTERFACE RADII ON ITS LOAD-BEARING CAPACITY 

Let us discuss a batch of ten fittings with different interface radii ranging from 3 to 38 mm (Fig. 3). 
On one side, the ends of the tubes are embedded. On the other side, the ends are loaded with unit 

forces as shown in Fig. 3. The material is isotropic. 

Finite element method is used to calculate equivalent stresses eqσ  in the interface. The analysis 

demonstrated that the mass of the fittings in the range of interface radii do not change significantly with 
deviation of around 1.5 %. 
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Fig. 3. 

Figure 4 presents the dependence of equivalent stresses on  interface radii.  

 

 

Fig. 4. 

As seen in Fig. 4, as the radius increases, stresses decrease until a certain value is reached and then 
start to increase again. This dependence may be also considered for estimation of strength-to-weight ratio, 
because the mass of fittings changes insignificantly. 

This calculation may be used to find the geometry of the saddle-shaped surface of a hypar as a first 
approximation. 

A MATHEMATICAL MODEL OF AN X-FITTING 

Equations for X-fitting definition  

Geometrical model of an X-fitting is based on two cylinders 1, 2 (Fig. 5) that interface with each other 
via hyperbolic paraboloids 3, 4 and 5, 6. 

 

 

Fig. 5. 
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The cylinders are identical. Generally, the structure has three planes of mirror symmetry. The origin 
Oxyz is in the point where cylinders intersect. An angle between the Oz axis and the axes of cylinders is 
±α. Equations of cylinders may be presented as follows 

 2 2 2( cos sin )x y z r+ − α + α = ;  (1) 

 2 2 2( cos sin )x y z r+ α + α = , (2) 

where 0
2

π
≤ α ≤ ; r is the radius of the cylinder, 0r > ; x, y, z are the coordinate lines; α is an angle 

between the axis of the cylinder and the Oz axis. 
Next step would be to place hyperbolic paraboloids on the newly formed crossing. 
A hyperbolic paraboloid is a surface of the second order that is described by a canonical equation in 

Cartesian coordinates: 

 
2 2

2 2
2

x y
z

a b
− = ,      (3) 

where a, b are the positive numbers; x, y, z  are the variable coordinates. 
The main feature of hypar—it is a set of straight lines (Fig. 2). 
Let us describe the position of a hypar-type surface within the coordinate grid. It should be noted that 

hypars 3 and 4 as well as hypars 5 and 6 are located symmetrically to the Oxz, Oyz and  Oxy, Oyz planes, 
respectively. 

Figure 6a shows that sections of a hypar by the coordinate planes Oxz and Oyz are parabolas, and 
a section by the xyz plane is a hyperbola. In turn, the surface of hyperbolic paraboloid is obtained by 
moving the lower parabola so that its vertex slides along the upper parabola (Fig. 6b). 

 

                         
(a)      (b) 

Fig. 6. 

Let us transform the canonical equation into a more convenient form:  

 2 2 ( )Ax By z c d− + = − ,    (4) 

where ( )c d  is the value that defines the coordinate of parabola vertices on the Oz (Oy) axis; it is selected 

randomly for a better fit onto the cylinders (Fig. 7). 
In this case, in the section Oyz (where x = 0; A, B, c > 0), branches of parabola are directed upwards, 

and in the section Oxz (where y = 0; A, B, c > 0), branches of parabola are directed downwards (Fig. 5, 
hypar 3). Respectively, in the section Oyz, where x = 0; A, B, d > 0,  and in the section Oxy, where z = 0; 
A, B, d > 0  (Fig. 7a, hypar 5).  
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(a)      (b) 

Fig. 7. 

The main limitation in generating the saddle-shaped surfaces is a condition of intersection or contact 
of parabolas with ellipses that appear where the Oxz or Oxy planes intersect with cylinders (Fig. 7b). 

Here ( )c d  are the vertices of a parabola; ( )e f  is the intersection point of two cylinders with the Oz 

(Oy) axes . Let us find the factors A and B.  
Positions of points e and f as intersections of two cylinders along the Oz and Oy axes, are determined 

by the following equations: 

 
sin

r
e =

α

;  
cos

r
f =

α

.    (5) 

Then parabolas that form hypars are built. 
Let us review equations of hyperbolic paraboloids with the parameter c. The parameter c is located on 

the Oz axis and may be either positive or negative. 
By transforming the canonical equation, we get the following equations, corresponding to hypars 3 

and  4: 

 
2 2 2 2

2 2
2

sin sin cos
( )

4sin ( sin )2 sin

c c r
x y k z c

c rr

α + α − α

− + = −

α α −α

,   (6) 

where 0
2

π
≤ α ≤ , c > 0, r > 0, k = 1, k = –1, respectively, for hypars 3 and 4. 

In a similar way, for hypars 5 and 6 an equation with the parameter d is considered: 

 
2 2 2 2

2 2
2

cos cos sin
( )

4cos ( cos )2 cos

d d r
x z k y d

d rr

α + α − α

− + = −

α α −α

,    (7) 

where k = 1 and  k = –1, respectively, for hypars 5 and 6. 

Finding the points of contact between a parabola and cylinders 

When the hypar equation is found solving the following set of equations, one may find the coordinates 
of points M, M′, N, N′ (Fig. 8)  of contact between a parabola and a cylinder on the Oyz plane: 

—for hypar 3 
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2

cot
;

2

cot
;

2 sin

con

con

y
B

r
z

B

α⎧
= ±⎪⎪

⎨
α⎪ = +

⎪ α⎩

    (8) 

-----for hypar 5: 

 
2

tan
;

2

tan
.

2 cos

con

con

y
B

r
z

B

α⎧
= ±⎪⎪

⎨
α⎪ = +

⎪ α⎩

   (9) 

Based on Eqs. (6) and (7), we get 2 ( )y Bz c d= + : 

—for hypar 3: 

 
2cos

4sin ( sin )
B

c r

α

=

α α −

; 

—for hypar 5:  

 
2sin

4cos ( cos )
B

d r

⎛ ⎞α
=⎜ ⎟

α α −⎝ ⎠
. 

 

 

Fig. 8. 

The next step is to find coordinates of contact points K, K′, L, L′ between parabolas and ellipses on 
the Oxz and Oxy planes by solving the following equations:  

-----for hypar 3: 

 2y Ax c= − + , 
2 2 2
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4 sin 1

2 sin

r A
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α −
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α
,    (10) 

where 
2 2 2
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-----for hypar 5: 

 2y Ax d= − + , 
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SELECTION OF HYPAR PARAMETERS TO ENSURE INTERFACING WITH CYLINDERS  

Let us review algorithms for building a hypar that interfaces with cylinders. To study the interface, let 
us perform a numerical experiment by building  3D models of X-fitting in Siemens NX software. 

Let us set specific dimensions of the X-fitting: the radii of the cylinders will be r = 50 mm, the angle 
between the coordinate axis Oz and the cylinder axis is α = 60 deg. Then equations of the cylinders will 
look as follows 

 

2

2 23
50

2 2

k
x y z

⎛ ⎞
+ − + =⎜ ⎟⎜ ⎟
⎝ ⎠

, 

where  k = –1 for cylinder 1, k = 1 for cylinder 2. 
Practically, there are two variants of building hypars that interface with cylinders: 
—variant 1, when the guiding parabola is tangent to two generating lines of cylinders in the Oyz 

section, while the generating parabola intersects cylinders; 
—variant 2, when the generating parabola is tangent to the cylinders in the Oxz plane, while 

the guiding parabola in the Oxz plane intersects cylinders. 
Equations for hypars within the first and second variants are as follows: 
-----for hypar 3: 

 

2
2

2 2

2 2

2

3 3 150
2 2 2

3 3 350 50
2 2 2

c c

x y z c

m n c

⎛ ⎞
⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠− + = −
⎛ ⎞

−⎜ ⎟⎜ ⎟
⎝ ⎠

;     (12) 

-----for hypar 5: 

 

2
2

2 2

2 2

2

31 1
50

22 2
1 1 150 50
2 2 2

d d

x z y d
t l d

⎛ ⎞⎛ ⎞
⎜ ⎟+ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠− + = −
⎛ ⎞

−⎜ ⎟
⎝ ⎠

,      (13) 

here for variant 1: m = 1, n = 4, t = 1, l = 5; for variant  2: m = 2, n = 6, t = 2.5, l = 6. 
Setting parameters c and d and using Eqs. (12) and (13), it is possible to create different variants of 

hypars for cylinder interface. 

STUDY OF INTERFACES BETWEEN A HYPAR AND CYLINDERS 

A key in selecting the parameters of a hypar is to ensure as smooth interface with cylinders as 
possible. Variables are as follows: selection of one of the two variants of contact of guiding and 
generating parabolas, depth of the fit that is specified by the parameters c and d. 

Saddles of a hypar that fit into the areas with the large and small interface radii of the cylinders are 
limited by straight lines (see Figs. 2 and 5), i. e. the projection of a hypar on a plane is a diamond. When 
the saddle is fitted, the boundary lines “cut” into the bodies of cylinders. The value of the cut-in is 
denoted as  δn.  Obviously, the optimum hypar will have the least values of δ. 

To conduct the numerical experiment, let us create twelve X-fittings with identical cylinders. Six 
samples correspond to variant 1, where the guiding parabola contacts with the longitudinal generating 
lines of cylinders. The other six samples correspond to variant 2, where the generating parabola contacts 
with cylinders in the Oxz plane Three X-fittings with various parameters c and d are designed under 
variants 1 and 2. The parameter c takes the values 85, 98, 110, and the parameter d —120, 135, 150. 
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Then the line of guiding parabola is divided into seven even sections between the point of contact with 
the cylinder and Oxz plane of symmetry. A plane perpendicular to the axis of cylinder 2 passes through 
the origin of each section. Depth of saddle cut into the cylinder is determined in each of eight sections. 

Let us consider an example corresponding to variant 2, i. e. when the hypar contacts with the ellipse 
generated by cylinders in the Oxz section while the guiding line cuts into the cylinder in the point G1 and 
comes out in the point G2 (Fig. 9). 

 

 

Fig. 9. 

Saddle parameters are as follows: c = 75, d = 135. Figure 10 illustrates simulation of hypars 3 and 6 
crossing the cylinders. Only two out of eight sections are demonstrated, namely, section 1 (Fig. 10a) and 
section 3 (Fig. 10b).  Simulating all the possible saddle fits, it is possible to find the maximum cut-in for 
every one of three parameters c and d. 

 

                 
(a)      (b) 

Fig. 10. 

Curves I and II on graphs (Fig. 11) show the dependence between the maximum cut-in of hypar 3 and 
saddle fit parameter c for variants 1 and 2, respectively. The same is demonstrated for the cut-in of 
hypar 5 depending on the parameter d (curve III for variant 1 and curve IV for variant 2). 

 

 

Fig. 11. 
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The graphs (see Fig. 11) show that maximum cut-in depth of hypars increases, when c and d increase. 
It is also seen that under variant 1 (dotted line) this depth is significantly less compared to variant 2 (solid 
line). 

SELECTION OF A REASONABLE SADDLE SURFACE BASED ON INTERFACE 

In designing X-fitting, it is obviously reasonable to select the one that has the better mechanical 
properties and minimum cutting into cylindrical elements. Under these conditions, reinforcement fibers 
have minimal bending in the interface between the hypar surface and a cylinder. 

At the next stage, hypars are generated in the area of cylinder interface (Fig. 9). In any case, we will 
see saddle cutting into the cylinders. To prevent cutting of the hypar into the cylinders and building 
straight lines that generate the ruled surface of the hypar, surfaces of the cylinders are dissected by planes 
passing through the boundary lines of the hypar (Fig. 12a). 

 

                         
(a)      (b) 

Fig. 12. 

The next step would be generating straight lines of the hypar. To do that, straight lines are drawn 
through the point of contact between a hypar and a cylinder, where they intersect, and through the points 
of contact with parabolas of the cylinder. These straight lines are divided into a certain amount of 
sections, and straight lines are drawn through these points (Fig. 12b). 

Different variants of rounding may be performed to provide smooth transition of fibers in 
the interfaces. 

CONCLUSIONS  

Fitting reinforcement pattern is suggested. The pattern provides a possibility to enhance its high 
weight efficiency. The main idea is to create an interface based on a ruled surface, such as a hyperbolic 
paraboloid, between crossing tubular rods. 

Application of such a structure assumes creating a method of strength analysis of the fitting with 
hypar-based interfaces and a process to create a preform of the fitting in the future. A concept of hypar-
type ruled surfaces may be spread on other aircraft structures as well, for example, fillets. 
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