МАТЕРИАЛЫ МЕЖДУНАРОДНОГО МЕЖДИСЦИПЛИНАРНОГО СИМПОЗИУМА "Упорядочение в минералах и сплавах" ОМА-16 (Ростов-на-Дону, сентябрь 2013 г.)

Сопредседатели Оргкомитета международного междисциплинарного симпозиума "Упорядочение в минералах и сплавах" ОМА-16 академик РАН В.А. Чантурия д-р физ.-мат. наук Ю.М. Гуфан

> Материалы международного междисциплинарного симпозиума "Упорядочение в минералах и сплавах" ОМА-16 под общей редакцией д-ра физ.-мат. наук Ю.М. Гуфана

> > И

МАТЕРИАЛЫ МЕЖДУНАРОДНОГО МЕЖДИСЦИПЛИНАРНОГО СИМПОЗИУМА "Порядок, беспорядок и свойства оксидов" ОДРО-16 (Ростов-на-Дону, сентябрь 2013 г.)

Сопредседатели Оргкомитета международного междисциплинарного симпозиума "Порядок, беспорядок и свойства оксидов" ODPO-16 академик РАН Ю.В. Гуляев д-р физ.-мат. наук Ю.М. Гуфан д-р физ.-мат. наук В.Г. Шавров

> Материалы международного междисциплинарного симпозиума "Порядок, беспорядок и свойства оксидов" ODPO-16 под общей редакцией д-ра физ.-мат. наук Ю.М. Гуфана

УДК 534.2

РОЛЬ НАНОСЕКУНДНЫХ ПРОЦЕССОВ В ФОРМИРОВАНИИ ДОМЕНОВ В СЕГНЕТОЭЛЕКТРИЧЕСКИХ КРИСТАЛЛАХ

© 2014 г. А. В. Голенищев-Кутузов, В. А. Голенищев-Кутузов, Р. И. Калимуллин, А. А. Потапов

Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет"

E-mail: kalru@newmail.ru

Рассмотрен вклад пироэлектрического и фотовольтаического эффектов в формирование индуцированных доменов в оксидных сегнетоэлектриках типа ниобата лития при облучении кристаллов наносекундными сфокусированными лазерными пучками. Установлено, что формирование инвертированных доменов в области облучения происходит при комбинированном воздействии генерируемых пироэлектрического и фотовольтаического полей в условиях резкого повышения температуры. Показано, что наиболее устойчивые домены возникают в образцах ниобата лития, содержащих примесные ионы Fe^{2+} и Fe^{3+} .

DOI: 10.7868/S0367676514040176

В последние два десятилетия было разработано несколько способов формирования отдельных доменов и периодических доменных структур (ПДС) с помощью лазерных пучков, что явилось основой для формирования наиболее совершенных фотонных и фононных кристаллов [1-3]. Обычно для этих целей ранее применялось либо непрерывное излучение, либо достаточно длительные (10⁻⁶-10⁻¹ с) импульсы. В этих экспериментах было обнаружено нагревание образцов при облучении, что приводило к уменьшению коэрцитивного поля Е_с [4, 5]. Однако в последние годы появились работы, в которых формирование доменов и ПДС выполнялось с помощью сверхкоротких (10⁻⁹-10⁻⁸ с) мощных импульсов статического электрического поля или лазера [6, 7]. Более того, появились работы [8–11], где индуцируемый лазером пироэлектрический эффект рассматривали как способ получения электронных, рентгеновских и нейтронных пучков. Следует отметить тенденцию использования в исследованиях стехиометрических образцов ниобата лития (НЛ), хотя они и весьма сложны в изготовлении, но обладают при этом значительно меньшими значениями Е_c. Однако до сих пор нет единой модели формирования доменов в подобных образцах лазерным способом [12, 13]. В последних работах [10, 11] использовали конгруэнтные образцы НЛ, допированные ионами железа, однако в них не обращали внимания на соотношение концентраций ионов Fe^{2+} и Fe^{3+} , в то время как именно ионы Fe²⁺ имеют полосу поглощения вблизи 500 нм, а также являются ян-теллеровскими ионами с сильными градиентами внутрикристаллических электрических полей.

Нами выполнено более подробное изучение влияния примесных ионов железа на формирование доменов в НЛ одним мощным лазерным импульсом с $\lambda = 530$ нм и $\lambda = 800$ нм. Интенсивность коротких ($\tau_{\pi} \leq 10$ нс) импульсов варьировали в пределах $10^{10} - 10^{11}$ Вт · м⁻². Облучение выполняли остросфокусированным пучком с $\varnothing \sim 0.5$ мм вдоль оси с образцов. Были исследованы два образца с размерами $10 \times 8 \times 0.5$ мм: один — с оптимальной общей концентрацией и
онов железа $C=10^{23}~{\rm m}^{-3}$ и соотношением концентраций $C_{{\rm Fe}^{2+}}/C_{{\rm Fe}^{3+}} \approx 0.3$, выбранным на основе предварительных исследований [14]; второй — номинально чистый. Измерение значений напряженности фотогенерированных полей Е_р выполняли по изменению показателя преломления Δn с помощью дополнительного He-Neлазера:

$$\Delta n(\mathbf{r},t) = -\frac{1}{2}n_{\rm o}^3 \cdot \mathbf{r} \cdot E_p,\tag{1}$$

где *r* — эффективный электрооптический коэффициент; *n*_o — показатель преломления обыкновенного луча.

К главным особенностям полученных результатов по воздействию коротких и мощных лазерных импульсов на чистые и допированные железом образцы НЛ можно отнести обнаружение следующего ряда фотоиндуцированных процессов, происходящих за время воздействия одиночного импульса ($\tau_{\pi} \leq 10$ нс).

1. Возникновение и спад пироэлектрического тока и напряжения (рис. 1). Пироэлектрический ток и напряжение измеряли с помощью электро-

Рис. 1. Временная зависимость фотоиндуцированного поля при облучении с $\lambda = 530$ нм.

дов, нанесенных на противоположные плоскости образцов:

$$E_{piro} = \frac{p}{\varepsilon \varepsilon_0} \frac{\Delta T}{\Delta t},\tag{2}$$

где *p* – пироэлектрический коэффициент.

При этом значения тока и напряжения были на порядок больше в допированном образце по сравнению с чистым. Эти же значения были в 2–3 раза большими при облучении допированного образца с $\lambda = 530$ нм, чем при $\lambda = 800$ нм.

2. Возникновение фотовольтаического поля E_{ph} , достаточного для локальной переполяризации допированного образца с $\lambda = 530$ нм (рис. 2).

3. Возникновение и спад локального импульсного повышения температуры облучаемого объема с градиентом $\Delta T/\Delta t \approx 10^7 \text{ K} \cdot \text{c}^{-1}$.

4. Возникновение локального домена в области лазерного облучения с $\lambda = 530$ нм *C*-поверхности образца на глубину до 10 мкм за счет одновременного воздействия импульсного нагрева и фотовольтаического поля (рис. 2).

В зависимости от мощности короткого лазерного импульса во временном интервале до 10 нс достигались практически предельные значения температуры ($\geq 10^3$ K), напряженности фотовольтаического поля ($E_{ph} \approx 3 \cdot 10^7$ В/м), верхний предел которых ограничивался внутренним электрическим пробоем или разрушением образца. Полученные значения $\Delta T/\Delta t$ и E_{ph} во временном интервале τ_{π} практически совпадают с данными работы [15], однако подобные значения получены нами при меньшем (до 30%) значении мощности P лазерного пучка, поскольку J_{piro} пропорциональна коэффициенту оптического поглощения α . Для

Рис. 2. Пространственная зависимость вдоль оси \vec{x} : *a* – интенсивности лазерного пучка; \vec{b} – скорости изменения температуры; \vec{b} – изменения показателя преломления; \vec{c} – глубины формирования домена вдоль оси \vec{c} (\vec{z}).

ранее исследованных образцов с низким отношением $C_{\rm Fe^{2+}}/C_{\rm Fe^{3+}}$ пироэлектрическое поле в несколько раз превышало фотовольтаическое. Это совершенно закономерно, поскольку $C_{\rm Fe^{2+}}$ в них была в 3–5 раз меньше, чем в наших образцах.

Таким образом, можно полагать, что в образцах ниобата лития с общей концентрацией ионов железа 10^{23} м⁻³ и оптимальным соотношением $C_{\rm Fe^{2+}}/C_{\rm Fe^{3+}} \approx 0.3$ локальная переполяризация при столь коротком лазерном импульсе с $\lambda = 530$ нм возникает за счет фотоиндуцированного поля E_p , образованного двумя вкладами: пироэлектрическим полем E_{piro} и фотовольтаическим полем E_{ph} , созданным градиентами полей ян-теллеровских ионов Fe²⁺. При $\lambda = 800$ нм поле E_{ph} крайне мало, а поле E_{piro} уменьшается менее значительно по сравнению с облучением при $\lambda = 530$ нм. В последнем случае формирование доменов возникает только при приложении внешнего поля, направленного навстречу полю E_c .

Наносекундный процесс формирования доменов подтверждается и более ранней работой [15], в которой наблюдали изменение показателя преломления в кристаллах ниобата лития, допированных железом, под действием одного лазерного импульса с $\tau_n = 20$ нс. В обоих случаях роль повышения температуры в области облучения до 400– 600° С сводилась к значительному уменьшению (в несколько раз) поля E_c . По сравнению с изложенными выше результатами по изучению фотоиндуцированных процессов в допированных образцах в ранее использовавшихся беспримесных кристаллах ниобата лития время формирования доменов было значительно больше (более чем на порядок).

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 78 № 4 2014

В настоящее время для беспримесных кристаллов пока не предложена единая модель оптического формирования доменов, причем в наиболее продвинутой модели [5] предполагается более долгий по времени термодиффузионный процесс перемещения ионов лития по вакансиям. В нашем же случае быстрый "перескок" электронов от ионов Fe²⁺ к Fe³⁺ обеспечивают наносекундный процесс формирования доменов.

Таким образом, в работе предложен и реализован новый механизм формирования доменов с помощью коротких наносекундных лазерных импульсов в допированных железом кристаллах ниобата лития.

СПИСОК ЛИТЕРАТУРЫ

- Kahman F., Pankrath R., Rupp R. // Opt. Commun. 1994. V. 107. P. 6.
- Chao S., Davis W., Tuschel D. et al. // Appl. Phys. Lett. 1995. V. 67. P. 1066.
- 3. Голенищев-Кутузов А.В., Калимуллин Р.И. // Физика тв. тела. Т. 1998. В. 40. С. 531.
- Hone M., Townesend P. // Appl. Phys. Lett. 1995. V. 66. P. 2667.

- Steigewald H., Lilienblum M., Cube F. von et al. // Phys. Rev. B. 2010. V. 52. P. 214105.
- Mingaliev E.A., Shur Y.Y., Kuznetsov D.K., Lebedev V.A. // 11th Int. Symp. on ferroelectric domains, Ekaterinburg. Abstract Book, 2012. P. 196.
- 7. Kuznetsov D.K., Mingaliev E.A., Shur Y.Y. // Ibid. P. 196.
- 8. Brownridge D. // Nature. 1992. V. 358. P. 287.
- Naranjo B., Gimzewski J., Putterman S. // Nature. 2005. V. 434. P. 1115.
- Kitamura K., Hatano H., Takekawa S. et al. // Appl. Phys. Lett. 2010. V. 97. P. 082963.
- Kitamura K., Louchev O.A., Hatano H., Wada S. // 11th Int. Symp. on ferroelectric domains, Ekaterinburg. Abstract Book, 2012. P. 31.
- Wang W., Kong Y., Liu H. et al. // J. Appl. Phys. 2009. V. 105. 043105.
- Zeng H., Kong Y., Liu H. et al. // J. Appl. Phys. 2010. V. 107. 063514.
- Голенищев-Кутузов В.А., Голенищев-Кутузов А.В., Калимуллин Р.И., Потапов А.А. // Изв. РАН. Сер. физ. 2013. Т. 77. С. 326; Golenishchev-Kutuzov A.V., Golenishchev-Kutuzov V.A., Kallimulin R.I., Potapov A.A. // Buss. Russ. Akad. Sci.: Physics. 2013. V. 77. № 3. P. 292.
- Simon M., Jermann F., Kratzig E. // Opt. Mater. 1995. V. 4. P. 286.