Вступительные испытания для поступающих в аспирантуру по образовательной программе 1.3 Физические науки научная специальность 1.3.11 Физика полупроводников

1. Химическая связь и атомная структураполупроводников

Электронная конфигурация внешних оболочек атомов и типы сил связи в твердых телах. Ван-дер-ваальсова, ионная и ковалентная связь.

Структуры важнейших полупроводников — элементов A^{IV} , A^{VI} и соединений типов $A^{III}B^V$, $A^{II}B^{VI}$, $A^{IV}B^{VI}$.

Примеси и структурные дефекты в кристаллических и аморфных полупроводниках. Химическая природа и электронные свойства примесей. Точечные, линейные и двумерные дефекты.

2. Основы технологии полупроводников и методы определенияих параметров

Методы выращивания объемных монокристаллов из жидкой и газовой фаз.

Методы выращивания эпитаксиальных пленок (эпитаксия из жидкой и газовой фазы).

Молекулярно-лучевая эпитаксия. Металлорганическая эпитаксия. Методы легирования полупроводников.

3. Основы зонной теории полупроводников

Основные приближения зонной теории. Волновая функция электрона в периодическом поле кристалла. Теорема Блоха. Зона Бриллюэна. Энергетические зоны.

Законы дисперсии для важнейших полупроводников. Изоэнергетические поверхности. Тензор обратной эффективной массы. Плотность состояний. Особенности Ван-Хова.

Уровни энергии, создаваемые примесными центрами в полупроводниках. Доноры и акцепторы. Мелкие и глубокие уровни. Водородоподобные примесные центры.

4. Равновесная статистика электронов и дырок в полупроводниках

Функция распределения электронов. Концентрация электронов и дырок в зонах, эффективная плотность состояний. Невырожденный и вырожденный электронный (дырочный) газ. Концентрации электронов и дырок на локальных уровнях. Факторы вырождения примесных состояний.

Положение уровня Ферми и равновесная концентрация электронов и дырок в собственных и примесных (некомпенсированных и компенсированных) полупроводниках. Многозарядные примесные центры.

5. Кинетические явления в полупроводниках

Кинетические коэффициенты — проводимость, постоянная Холла и термо-ЭДС. Дрейфовая скорость, дрейфовая и холловская подвижности, фактор Холла. Дрейфовый и диффузионный ток. Соотношение Эйнштейна.

6. Контактные явления в полупроводниках

Схема энергетических зон в контакте металл-полупроводник. Обогащенные, обедненные и инверсионные слои пространственного заряда вблизи контакта. Вольт-амперная характеристика барьера Шоттки.

Энергетическая диаграмма p-nперехода. Инжекция неосновных носителей заряда в p-nпереходе.

Гетеропереходы. Энергетические диаграммы гетеропереходов.

Варизонные полупроводники.

7. Свойства поверхности полупроводников

Эффект поля.

Таммовские уровни. Скорость поверхностной рекомбинации.

8. Оптические явления в полупроводниках

Комплексная диэлектрическая проницаемость, показатель преломления, коэффициент отражения, коэффициент поглощения. Связь между ними и соотношения Крамерса—Кронига.

Межзонные переходы. Край собственного поглощения в случае прямых и непрямых, разрешенных и запрещенных переходов. Экситонное поглощение и излучение. Спонтанное и вынужденное излучение.

Поглощение света на свободных носителях заряда.

Поглощение света на колебаниях решетки. Рассеяние света колебаниями решетки, комбинационное рассеяние на оптических фононах (Рамана — Ландсберга), рассеяние на акустических фононах (Бриллюэна — Мандельштама).

9. Фотоэлектрические явления

Примесная и собственная фотопроводимость. Влияние прилипания неравновесных носителей заряда на фотопроводимость.

Оптическая перезарядка локальных уровней и связанные с ней эффекты. Термостимулированная проводимость.

Фоторазогрев носителей заряда.

Фотоэлектромагнитный эффект.

10. Некристаллические полупроводники

Аморфные и стеклообразные полупроводники. Структура атомной матрицы некристаллических полупроводников. Идеальное стекло. Гидрированные аморфные полупроводники.

Особенности электронного энергетического спектра неупорядоченных полупроводников. Плотность состояний. Локализация электронных состояний. Щель подвижности.

Легирование некристаллических полупроводников.

11. Принципы действия полупроводниковых приборов

Вольтамперная характеристика p-nперехода. Приборы с использованием p-nпереходов.

Туннельный диод. Диод Ганна. Биполярный транзистор. Тиристор.

Энергетическая диаграмма структуры металл-диэлектрик-полупроводник (МДП). Полевые транзисторы на МДП-структурах. Приборы с зарядовой связью.

Шумы в полупроводниковых приборах.

Фотоэлементы и фотодиоды. Спектральная чувствительность и обнаружительная способность. Полупроводниковые детекторы ядерных излучений. Фотоэлектрические преобразователи, КПД преобразования.

Светодиоды и полупроводниковые лазеры. Инжекционные лазеры на основе двойной гетероструктуры.

Использование наноструктур в полупроводниковых приборах. Гетеротранзистор с двумерным электронным газом (HEMT). Гетеролазеры на основе структур с квантовыми ямами и квантовыми точками. Резонансное туннелирование в двух барьерной гетероструктуре и резонансно-туннельный диод. Оптический модулятор на основе квантово-размерного эффекта Штарка.

2. Перечень экзаменационных вопросов.

- 1. Уравнение Шредингера для электрона в кристалле. Адиабатическое, валентное и одноэлектронноеприближение.
 - 2. Свойства волновой функции электрона в кристалле. Теорема Блоха.
- 3. Свойства волнового вектора электрона в кристалле. Квазиимпульс. Зоны Бриллюэна.
- 4. Энергетический спектр электрона в кристалле и основные методы егорасчета.
- 5. Эффективная масса электрона в кристалле. Электроны и дырки как квазичастицы вкристаллах.
- 6. Стандартные и нестандартные структуры энергетических зон в полупроводниках. Эффективная масса плотности состояний.
- 7. Примесные состояния электронов в кристалле. Водородоподобная модель. Простые и сложные (многовалентные) доноры иакцепторы.
 - 8. Экситоны в кристалле.
- 9. Функция распределения и функция плотности состояний для электрона в кристалле. Собственный полупроводник.
- 10. Температурная зависимость уровня Ферми и концентрации носителей заряда в собственномполупроводнике.
- 11. Температурная зависимость уровня Ферми и концентрации носителей в некомпенсированномполупроводнике.
- 12. Температурная зависимость уровня Ферми и концентрации носителей заряда в компенсированномполупроводнике.
 - 13. Вырождение электронного газа вполупроводниках.
 - 14. Механизмы рассеяния носителей заряда вполупроводниках.
 - 15. Эффект Холла. Температурная зависимость постоянной Холла.

- 16. Холловская и дрейфовая подвижность носителей в полупроводниках. Температурная зависимость подвижности при рассеянии на акустических колебаниях решетки и ионахпримеси.
- 17. Зависимость подвижности носителей заряда в полупроводниках от напряженности электрического поля в сильных электрическихполях.
- 18. Изменение концентрации носителей заряда в полупроводниках в сильных электрических полях (эффектПула-Френкеля).
- 19. Кинетическое уравнение Больцмана. Интеграл столкновений. Время релаксации.
- 20. Энергетическая диаграмма поверхности полупроводника. Работа выхода. Влияние поверхностных состояний на свойства при поверхностной области.
 - 21. Поверхностная проводимость и эффектполя.
 - 22. Перенос неравновесных носителей заряда вполупроводнике.
 - 23. Диффузионные и дрейфовые токи. Соотношение Эйнштейна.
- 24. Собственное, примесное поглощение и поглощение свободными носителями заряда электромагнитного излучения. Прямые и непрямые переходы в полупроводниках.
- 25. Явление фотопроводимости. Основные параметры. Спектральная зависимость и люкс-ампернаяхарактеристика.
 - 26. Влияние уровней прилипания на кинетикуфотопроводимости.
- 27. Излучательная межзонная рекомбинация в полупроводнике. Зависимость времени жизни носителей заряда от уровня легирования и температуры.
- 28. Рекомбинация носителей через ловушки. Зависимость времени жизни носителей от уровня Ферми итемпературы.
- 29. Безызлучательная межзонная рекомбинация. Зависимость времени жизни носителей заряда от уровня Ферми, итемпературы.
- 30. Р-п-переход. Энергетическая диаграмма, вольтамперная характеристика.
- 31. Явление фото-эдс на p-n- переходе. Зависимость фототока и фотоэдс от интенсивностиосвещения.
- 32. Контакт металл-полупроводник. Диодная и диффузионная модели выпрямления. Распределение потенциала. Барьерная емкость контакта.
- 33. Термоэлектрические явления (общая характеристика). Связь явлений друг с другом. Температурная зависимость дифференциальной термо-эдс в полупроводнике.
- 34. Упругие и релаксационные (тепловые) механизмы поляризации диэлектриков. Частотная зависимость поляризации диэлектриков.
 - 35. Диэлектрические потери. Тангенс угла диэлектрическихпотерь.
 - 36. Нелинейные диэлектрики. Пьезо- и сегнетоэлектрики.
 - 37. Ионная проводимость диэлектриков, ее основныеособенности.
- 38. Основные виды электрического пробоя в диэлектриках, их характеристики.

- 39. Основные представления о кристаллических структурах с пониженной размерностью. Квантовые ямы, проволоки, точки и сверхрешетки.
- 40. Электронные и дырочные уровни в изолированной квантовой яме на примере структуры GaAs/AlGaAs. Оптические переходы и правила отбора. Двумерные энергетические зоны и плотностьсостояний.
- 41. Экситонные состояния в квантовых ямах. Тяжелые и легкие экситоны в структуреGaAs/AlGaAs.
- 42. Селективное легирование и двумерный электронный газ в полупроводниковых гетероструктурах.
- 43. Эффект Холла в полупроводниковых гетероструктурах с двумерным электроннымгазом.
- 44. Стимулированное излучение. Твердотельные лазеры. Полупроводниковыелазеры.

3. Список рекомендуемых источников

- 6.1. Основная литература
- 6.1.1. Павлов П.В., Хохлов А.Ф. Физика твердого тела: учебник. 4-е изд., стереотип. СПб: Ленанд, 2015.-496c.
- 6.1.2. Байков Ю.А., Кузнецов В.М. Физика конденсированного состояния: учебное пособие для вузов. М.: Бином. Лаборатория знаний, 2014.-296c.
- 6.1.3. Стрекалов Ю.А., Тенякова Н.А. Физика твердого тела: учебное пособие. М.: Инфра-М, 2013. 312с.
 - 6.2. Дополнительная литература
- 6.2.1. Шалимова К.В. Физика полупроводников: учебник. 4-е изд., стереотип. СПб.: Лань, 2010. 400 c. Имеется электронный образовательный pecypc «Лань», издательства режим доступа http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=648
- 6.2.2. Епифанов Г.И. Физика твердого тела: учебное пособие. 4-е изд., стереотип. СПб.: Лань, 2011. 288 с. Имеется электронный образовательный ресурс издательства «Лань», режим доступа http://e.lanbook.com/books/element.php?pl1_cid=25&pl1_id=2023
- 6.2.3. Бонч-Бруевич В.Л., Калашников С.Г. Физика полупроводников. М.: Наука,1979.
 - 6.2.4. Займан Дж. Принципы теории твердого тела. М.: Мир,1974.
 - 6.2.5. Киреев П.С. Физика полупроводников. М.: Высш. шк.,1975.
- 6.2.6. Шалимова К.В. Физика полупроводников. М.: Энергоатомиздат, 1985.
 - 6.2.7. Зи С. Физика полупроводниковых приборов. М.: Мир, 1984.
- 6.2.8. Мотт Н., Мотт Э. Электронные процессы в некристаллических веществах. М.: Мир, 1974.

6.2.9. Мотт Ю.И. Оптические свойства полупроводников. М.: Наука, 1977.

4. Пример экзаменационного билета

Вопрос 1. Опишите функцию распределения и функцию плотности состояний для электрона в кристалле. Охарактеризуйте собственный полупроводник.

Вопрос 2. Опишите явление фотопроводимости в полупроводниках и приведите ее основные параметры, типичную спектральную зависимость и люкс-амперную характеристику на примере кремния.

Вопрос 3. Опишите процессы, происходящие в p-n-переходе в отсутствие и при подаче внешнего напряжения. Приведите энергетическую диаграмму и вольтамперную характеристику.

Программа вступительного испытания по дисциплине <u>Физика полупроводников</u> для поступающих на программу подготовки научно-педагогических кадров в аспирантуре «Физика полупроводников» по направлению <u>03.06.01</u> <u>Физика и астрономия</u> обсуждена и одобрена на заседании HTC.

Руководитель Образовательной программы

/МатухинВ.Л./

ПРОГРАММА

вступительного экзамена в аспирантуру по иностранному языку включает:

- 1. Чтение, письменный перевод со словарем на родной язык оригинального текста по специальности. Объем 1500 печатных знаков. Времяна подготовку 45 минут. Форма проверки чтение части текста вслух, проверка всего подготовленного перевода и переска знародномя зыке. Пользование словарем строго регламентируется указанным временем. Если не выполнен минимум (1000 печатных знаков), экзамен продолжать неследует.
- 2. Чтение (просмотровое, без словаря) оригинального текста по специальности. Объем 1500 печатных знаков. Время на подготовку 2-3 минуты. Форма проверки передача основной идеи текста на родном или иностранномязыке.
- 3. Чтение научно-популярного или общественно-политического текста без словаря. Объем 1000 печатных знаков. Время на подготовку 15 минут. Форма проверки передача содержания текста на родном (или иностранном) языке.
- 4. Беседа на иностранном языке по вопросам, связанным со специальностью аспиранта и социальной тематикой

ПРОГРАММА

вступительного экзамена в аспирантуру по философии включает:

- 1. Предметфилософии.
- 2. Миф, религия, философия как формымировоззрения.
- 3. Основнойвопросфилософии.
- 4. Функции философии, ее назначение. Философия в системекультуры.
- 5. Взаимоотношениефилософии инауки.
- 6. Структурафилософии. Спецификафилософскогознания
- 7. Кругпроблемфилософии.
- 8. Философия Древней Индии (ведизм, буддизм,индуизм).
- 9. Философия Древнего Китая (конфуцианство, даосизм).
- 10. Милетская школа о первоначалахмира.
- 11. Элейская школа о проблемахбытия.
- 12. Научные школы и направления досократовской философии (пифагорейский союз; философия Гераклита; философия Демокрита).
- 13. Сократ и егоучение.
- 14. Платон и его философскоеучение.
- 15. Философскиевзгляды Аристотеля.
- 16. Философия эллинизма: киники, неоплатонизм, стоики, эпикуреизм, скептицизм.
- 17. Средневековая философия (общая характеристика). Патристика и схоластика.
- 18. ФилософияэпохиВозрождения.
- 19. Научная революция и философия XVII-XVIII веков. Эмпиризм и рационализм.

- 20. Ф. Бэкон и его философскоеучение.
- 21. Философскоеучение Р. Декарта.
- 22. Философскиевзгляды Б.Спинозы.
- 23. Философскиевзгляды Д.Локка.
- 24. ФилософияПросвещения XVIIIв.
- 25. Философия Канта, её характерныечерты.
- 26. Философская система и диалектика Гегеля.
- 27. Антропологическийматериализм Л. Фейербаха.
- 28. Философия позитивизма и его историческиеформы.
- 29. Основные направления зарубежной философии ХХвека.
- 30. Философия XIX века: основные школы инаправления.
- 31. Русскаярелигиознаяфилософия.
- 32. Учение З.Фрейда.
- 33. Категория «бытие», её философскийсмысл.
- 34. Философское понимание материи. Структураматерии.
- 35. Движение и развитие. Многообразие форм движенияматерии.
- 36. Пространство и время как всеобщие формыбытия.
- 37. Познание как предмет философского анализа. Субъект и объектпознания.
- 38. Проблема истины в философии. Критерииистины.
- 39. Познание ипрактика.
- 40. Проблемы научного познания и его специфическиепризнаки.
- 41. Рациональное познание и егоформы.
- 42. Чувственное познание и егоформы.
- 43. Развитие форм отражения в неживой и живой природе. Общественная сущность сознания. Сознание имозг.

- 44. Формы и методы научногопознания.
- 45. Общественное бытие и общественное сознание. Структураобщественногосознания.
- 46. Философскиеподходы ксознанию.
- 47. Диалектика как учение о взаимосвязях иразвитии
- 48. Законыдиалектики
- 49. Категориидиалектики
- 50. Проблемачеловека вфилософии.
- 51. Человек, личность, индивид,индивидуальность.
- 52. Проблемаантропогенеза.
- 53. Проблема жизни и смерти человека. Представления о смыслежизни.
- 54. Биологическое и социальное вчеловеке.
- 55. Взаимосвязьприроды иобщества.
- 56. Культуракакмирчеловека.
- 57. Технологические и социальные причины современногоэкологического кризиса и пути выхода из него. Проблеманоосферы.
- 58. Глобальные проблемы современности и основные пути ихрешения.
- 59. Формационная концепция общественного развития.
- 60. Цивилизационная концепция общественного развитии.