Всероссийский (третий) этап Всероссийской олимпиады студентов по теоретической механике

Казань, Казанский государственный энергетический университет 19 – 23 ноября 2018 г.

Решения задач теоретического конкурса

Автор задач:

доцент кафедры ТМ и СМ КНИТУ Муштари Айрат Ильдарович

Рецензент:

доцент кафедры АГД К(П)ФУ Марданов Ренат Фаритович

Согласовано:

председатель жюри олимпиады, профессор кафедры ТМ НГАСУ (Сибстрин) Юдин Владимир Алексеевич

Решение задачи С1.

Обозначим через \overline{G} вес твердого тела, образованного стержнем AB и материальной точкой на его конце B (рис. 1). Из условия задачи: G=8P. Обозначим центр тяжести этого твердого тела через C, а длину стержня через l. Будем отсчитывать ось x от точки B вдоль луча BA. По формуле для центра тяжести:

$$BC = x_C = \frac{P(l/2) + 7P \cdot 0}{8P} = \frac{l}{16}.$$
 (1)

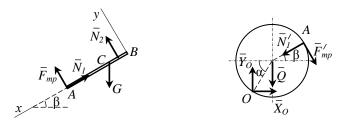


Рис. 1

Рис. 2

Запишем пока одно из уравнений равновесия тела AB:

$$\sum_{k} F_{kx} = G \sin \beta - N_1 = 0.$$

$$N_1 = \frac{G}{2}.$$
(2)

Сила трения \overline{F}_{mp} , действующая со стороны диска на AB, может быть направлена параллельно оси y в одном из двух возможных направлений. Формально выбираем одно из них, как указано на рисунках. При этом в уравнениях равновесия будем использовать обозначение $F_{mp,y}$ с учетом знака проекции. По 3-му закону Ньютона:

 $\overline{F}_{mp}^{\prime} = -\overline{F}_{mp}, \ F_{mp}^{\prime} = F_{mp}.$ С учетом этого при равновесии диска (рис. 2):

$$\sum_{k} M_{O}(\overline{F}_{k}) = -QR\cos\alpha + N_{1}R\sin(\alpha - \beta) - F_{mp,y}(R + R\cos(\alpha - \beta)) = 0.(3)$$

С учетом (2):

$$-Q \cdot \frac{1}{2} + \frac{G}{2} \cdot \frac{1}{2} - F_{mp,y} \left(1 + \frac{\sqrt{3}}{2} \right) = 0.$$

$$F_{mp,y} = \frac{G - 2Q}{4 + 2\sqrt{3}}.$$
(4)

При равновесии выполняется: $-fN_1 \le F_{mp,y} \le fN_1$. Тогда из (4) с учетом (2):

$$-\frac{2-\sqrt{3}}{2} \cdot \frac{G}{2} \le \frac{G-2Q}{4+2\sqrt{3}} \le \frac{2-\sqrt{3}}{2} \cdot \frac{G}{2}.$$

$$-G \le 2G-4Q \le G. \tag{5}$$

Из левого неравенства в (5):

$$Q \le \frac{3}{4}G. \tag{6}$$

Из правого неравенства в (5):

$$Q \ge \frac{G}{4}. (7)$$

Очевидно, что твердое тело AB не может опрокинуться против часовой стрелки вокруг крайней левой точки наклонной поверхности в случае $F_{mp,y}<0$, так как плечо \overline{F}_{mp} относительно этой точки по условию пренебрежимо мало по сравнению с плечом силы \overline{G} . Для того, чтобы AB не опрокинулся по часовой стрелке относительно точки B в случае $F_{mp,y}>0$, должно быть:

$$\sum_{k} M_{B}(\overline{F}_{k}) = G\cos\beta \cdot \frac{l}{16} - F_{mp,y} \cdot l - N_{2} \cdot h = 0.$$
 (8)

Здесь h — расстояние до точки B от точки приложения равнодействующей нормальной реакции \overline{N}_2 со стороны наклонной поверхности. Условие неопрокидывания: $h \ge 0$, т.е. точка приложения \overline{N}_2 должна находиться на отрезке AB. Тогда из (8):

$$G\cos\beta \cdot \frac{l}{16} - F_{mp,y} \cdot l \ge 0.$$

$$\frac{G\sqrt{3}}{32} - F_{mp,y} \ge 0.$$
(9)

Из (9) с учетом (4):

$$\frac{G\sqrt{3}}{32} \ge \frac{G - 2Q}{4 + 2\sqrt{3}}.$$

$$Q \ge \frac{13 - 2\sqrt{3}}{32}G.$$
(10)

Коэффициент $\frac{13-2\sqrt{3}}{32}\approx 0,298$. Так как $\frac{1}{4}<\frac{13-2\sqrt{3}}{32}<\frac{3}{4}$, из (6),

(7), (10) получаем искомое условие:

$$\frac{13 - 2\sqrt{3}}{32} G \le Q \le \frac{3}{4} G.$$

$$\frac{13 - 2\sqrt{3}}{4} P \le Q \le 6P.$$

Замечание. Еще одно уравнение равновесие АВ:

$$\sum_{k} F_{ky} = F_{mp,y} + N_2 - G\cos\beta = 0.$$

Так как $N_2 \ge 0$: $G\cos\beta - F_{mp,y} \ge 0$. Это выполняется в силу (9). Из этого следует невозможность полного отрыва тела AB от наклонной плоскости. Но это и так достаточно очевидно из общих соображений.

Omsem.
$$\frac{13-2\sqrt{3}}{4}P \le Q \le 6P$$
.

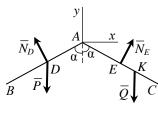


Рис. 3

Решение задачи С2.

1). Обозначим AB = AC = l, α — угол между стержнями и вертикалью у (рис. 3). Пусть вес \overline{Q} приложен к некоторой точке K стержня AC. Обозначим AK = a, $0 \le a \le l$. Силы реакции выступов \overline{N}_D и \overline{N}_E перпендикулярны стержням. Достаточно записать два уравнения равновесия твердого тела BAC:

$$\sum_{L} F_{kx} = -N_D \sin \alpha + N_E \sin \alpha = 0.$$
 (1)

$$\sum_{k} M_{A}(\overline{F}_{k}) = -N_{D} \cdot \frac{l}{2} + N_{E} \cdot \frac{l}{2} + P \sin \alpha \cdot \frac{l}{2} - Q \sin \alpha \cdot a = 0, \qquad (2)$$

Из (1) получим:

$$N_D = N_E. (3)$$

Из (2) с учетом (1):

$$a = \frac{Pl}{2O} \,. \tag{4}$$

Так как величина a может изменяться в пределах $0 \le a \le l$, то из (4) получаем условие:

$$Q \ge \frac{P}{2}$$
.

2). Вначале рассмотрим равновесие невесомого стержня AC (рис. 4). Введем оси x и y перпендикулярно и параллельно AC, соответственно. Укажем силы реакции шарнира \overline{X}_A , \overline{Y}_A . Однако, из уравнения равновесия

$$\sum_{k} F_{ky} = Y_A = 0$$

сразу следует

$$Y_A = 0. (5)$$

Таким образом, AC находится под действием системы параллельных сил. Кроме того,

$$\sum_{k} M_{E}(\overline{F}_{K}) = X_{A} \cdot \frac{l}{2} - N_{C} \cdot \frac{l}{2} = 0.$$

$$X_{A} = N_{C}.$$
(6)

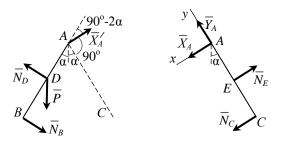


Рис. 4

Далее рассмотрим равновесие стержня AB. С учетом (5) к его точке A приложена сила реакции $\overline{X}'_A = -\overline{X}_A$.

$$\sum_{k} M_{D}(\overline{F}_{k}) = N_{B} \cdot \frac{l}{2} - X_{A}^{\prime} \sin(90^{\circ} - 2\alpha) \cdot \frac{l}{2} = 0.$$

$$N_{B} = X_{A} \cos 2\alpha. \tag{7}$$

Заметим, что (7) получается независимо от того, будет ли $90^{\circ} - 2\alpha > 0$ как на рис. 4, либо $90^{\circ} - 2\alpha \le 0$.

Из (6) и (7) получаем:

$$N_B = N_C \cos 2\alpha . (8)$$

Отметим, что $N_C=0$ не может реализоваться. Иначе из (8): $N_B=0$ и из (6): $X_A=0$. При этом стержень AB находится под дей-

ствием системы двух непараллельных сил $\{\overline{P}, \overline{N}_D\}$. Это противоречит равновесию AB.

Таким образом, должно выполняться:

$$N_C > 0, (9)$$

$$N_B \ge 0, \ N_D \ge 0, \ N_E \ge 0.$$
 (10)

Рассмотрим три случая в зависимости от знака $\cos 2\alpha$.

- 1. Если $\cos 2\alpha < 0$, то в силу (9) из (8) следовало бы $N_B < 0$, что противоречит (10). Значит, этот случай не может реализоваться.
- 2. Если $\cos 2\alpha = 0$, то из (8): $N_B = 0$. При этом $2\alpha = \pi/2$, $\overline{X}_A' \uparrow \uparrow \overline{BA}$ и AB находится под действием системы сходящихся сил $\{\overline{P}, \overline{N}_D, \overline{X}_A\}$. Из двух уравнений равновесия для проекций выражаются через P значения $N_D > 0$ и $X_A > 0$. Из (6) получаем $N_C = X_A > 0$. Далее, из $\sum_k F_{kx} = 0$ для AC получаем $N_E = 2X_A > 0$. Итак, условия (9), (10) и все уравнения равновесия выполняются непротиворечиво.
- 3. Если $\cos 2\alpha > 0$, то с учетом (9) из (8): $N_B > 0$. При этом $0 < 2\alpha < \pi/2$, AB находится под действием плоской системы сил $\{\overline{P}, \overline{N}_B, \overline{N}_D, \overline{X}_A\}$. В уравнении

$$\sum_{k} M_{A}(\overline{P}_{k}) = M_{A}(\overline{N}_{B}) + M_{A}(\overline{P}) + M_{A}(\overline{N}_{D}) = 0$$
(11)

первые два момента положительны, значит $M_A(\overline{N}_D) < 0$ и поэтому $N_D > 0$. Несложно заметить, что система трех уравнений равновесия тела AB с тремя неизвестными реакциями решается однозначно. Из (7) получаем значение $X_A > 0$. (Подробнее, из уравнения проекций на прямую AB: $X_A = P/(2\sin\alpha)$. Из (7): $N_B = P\cos 2\alpha/(2\sin\alpha)$. Из (11): $N_D = P\cos^2\alpha/\sin\alpha$.)

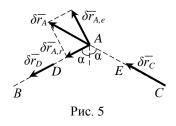
Далее, рассуждая, как в случае 2, получаем значения $N_C > 0$, $N_E > 0$. Итак, условия (9), (10) и все уравнения равновесия выполняются непротиворечивым образом.

Таким образом, система находится в равновесии в случаях 2 и 3, то есть при $0 < 2\alpha \le \pi/2$, откуда следует первый ответ:

$$0 < \alpha \le \pi/4$$
.

При этом из (8) получаем второй ответ:

$$N_B/N_C = \cos 2\alpha$$
.



Замечание 1. В качестве дополнения укажем, каким образом произойдет выход из равновесия в случае 1 (рис. 5). Под воздействием веса \overline{P} произойдет малое перемещение $d\overline{r}_D \uparrow \uparrow \overline{AB}$. Тогда $d\overline{r}_A = d\overline{r}_C$, $d\overline{r}_A \uparrow \uparrow \overline{CA}$, что возможно именно в силу $2\alpha > \pi/2$. Для обоснова-

ния этого удобно рассмотреть малое перемещение точки A как сложное: $d\bar{r}_A = d\bar{r}_{A.e} + d\bar{r}_{A.r}$, где переносная составляющая, связанная с поворотом A вокруг D: $d\bar{r}_{A.e} \perp AB$, а относительная составляющая, связанная с поступательным перемещением AB: $d\bar{r}_{A.r} = d\bar{r}_D$.

Замечание 2. Требование, чтобы все нормальные реакции были строго положительны, было бы излишним. Это иллюстрирует случай 2, когда при равновесии реализуется $N_{\rm R}=0$.

Замечание 3. Одной лишь неотрицательности нормальных реакций недостаточно для утверждения о равновесии системы. Необходимо убедиться в непротиворечивости системы уравнений равновесия.

Например, рассмотрим известную задачу о лестнице, в состоянии покоя опирающейся концами на гладкие пол и стену. Отрыва концов лестницы от опор при этом не будет, то есть обе нормальные реакции положительны. Но лестница из-за отсутствия трения не будет находиться в равновесии. Строго обосновать это позволяет попытка решить систему уравнений равновесия, приводящая к противоречию из-за того, что в трех уравнениях содержатся две неизвестные реакции.

Другой пример может быть получен, если в нашей задаче отбросить стержень AC, а для стержня AB одну из опор расположить не в

середине D, а несколько ближе к концу B. Тогда стержень AB начнет соскальзывать вдоль своей линии. При этом обе нормальные реакции опор будут положительными. Однако не соблюдается условие равенства нулю проекций сил на ось, параллельную AB.

Omsem. 1).
$$Q \ge \frac{P}{2}$$
. 2). $0 < \alpha \le \pi/4$. $\frac{N_B}{N_C} = \cos 2\alpha$.

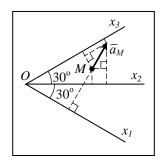


Рис. 6

Решение задачи К1.

Из условия получаем:

$$a_{x_1} = \frac{d^2 x_1}{dt^2} = \frac{d^2}{dt^2}(t) = 0.$$

Значит, вектор \overline{a}_M ускорения точки M перпендикулярен оси x_1 (рис. 5). Тогда углы между \overline{a}_M и осями x_3 и x_2 равны 30° и 60° , соответственно.

$$a_{x_3} = \frac{d^2 x_3}{dt^2} = \frac{d^2}{dt^2} (t^3) = 6t$$
 . (1)

С другой стороны:

$$a_{x_3} = a\cos 30^\circ = \frac{a\sqrt{3}}{2}$$
. (2)

Приравнивая (1) и (2), находим:

$$a = \frac{12t}{\sqrt{3}} \,. \tag{3}$$

Тогда с учетом (3) получаем:

$$a_{x_2} = a\cos 60^\circ = \frac{12t}{\sqrt{3}} \cdot \frac{1}{2} = 2\sqrt{3} t$$
.

Omsem. $a_{x_2}(t) = 2\sqrt{3} t$.

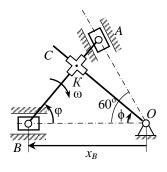


Рис. 7

Решение задачи К2.

Способ 1 (аналитический).

1). Обозначим для произвольного момента времени: $\phi = \angle KBO$, $\phi = \angle BOK$ (рис. 7). Тогда $\phi = (\pi/2) - \phi$, откуда

$$\dot{\phi} = -\dot{\phi} = -\omega. \tag{1}$$

Обозначим $x_B = OB$. В ΔOAB : $\angle OAB = \pi - (\pi/3) - \phi = (2\pi/3) - \phi$. По теореме синусов:

$$\frac{x_B}{\sin((2\pi/3)-\varphi)} = \frac{AB}{\sin(\pi/3)}.$$

$$x_B = \frac{2l}{\sqrt{3}}\sin((2\pi/3) - \varphi)$$
. (2)

Дифференцируем (2) по времени с учетом (1):

$$\dot{x}_B = \frac{2l}{\sqrt{3}}\cos((2\pi/3) - \phi) \cdot (-\dot{\phi}) = \frac{2l\omega}{\sqrt{3}}\cos((2\pi/3) - \phi).$$
 (3)

Для рассматриваемого положения механизма отрезок OK является одновременно высотой и медианой в ΔABC , откуда OA = OB. А так как $\angle AOB = 60^{\circ}$, то ΔABC – правильный и $\phi = 60^{\circ}$.

Таким образом, при $\varphi = \pi/3$ из (3) получим:

$$v_B = \dot{x}_B = \frac{2l\omega}{\sqrt{3}}\cos(\pi/3) = \frac{\sqrt{3}l\omega}{3}.$$
 (4)

2). Дифференцируем (3) по времени с учетом (1):

$$\ddot{x}_B = \frac{2l\omega}{\sqrt{3}} \left(-\sin((2\pi/3) - \varphi) \right) \cdot (-\dot{\varphi}) = -\frac{2l\omega^2}{\sqrt{3}} \sin((2\pi/3) - \varphi).$$
 (5)

При $\varphi = \pi/3$ из (5):

$$\ddot{x}_B = -\frac{2l\omega^2}{\sqrt{3}}\sin(\pi/3) = -l\omega^2$$
. (6)

Обозначим s = OK . Из прямоугольного $\triangle OBK$:

$$s = x_B \sin \varphi \,. \tag{7}$$

Дифференцируем (7) по времени дважды с учетом (1):

$$\dot{s} = \dot{x}_B \sin\varphi + x_B \cos\varphi \cdot \dot{\varphi} = \dot{x}_B \sin\varphi - \omega x_B \cos\varphi. \tag{8}$$

 $\ddot{s} = \ddot{x}_B \sin \varphi + \dot{x}_B \cos \varphi \cdot \dot{\varphi} - \omega \dot{x}_B \cos \varphi + \omega x_B \sin \varphi \cdot \dot{\varphi} =$

$$=\ddot{x}_{B}\sin\varphi-2\omega\dot{x}_{B}\cos\varphi-\omega^{2}x_{B}\sin\varphi. \tag{9}$$

При $\varphi = \pi/3$: $x_B = l$. Из (9) получим с учетом (4), (6):

$$\ddot{s} = -l\omega^2 \cdot \frac{\sqrt{3}}{2} - 2\omega \frac{\sqrt{3} l\omega}{3} \cdot \frac{1}{2} - \omega^2 l \cdot \frac{\sqrt{3}}{2} = -\frac{4\sqrt{3} l\omega^2}{3}.$$

Ускорение крестовины K относительно OC по модулю равно:

$$a_r = |\ddot{s}| = \frac{4\sqrt{3}\,l\omega^2}{3}$$
 (10)

Способ 2 (геометрический).

1). Так как угол между стержнями все время равен 90° , очевидно, что угловая скорость AB также равна ω и направлена по часовой стрелке (рис. 8). (Строгое обоснование следует из (1)).

На пересечении к перпендикулярам к \overline{v}_A и \overline{v}_B строим мгновенный центр скоростей P для стержня AB. Так как для данного положения механизма ΔABC — правильный, то $\angle BOK = 30^{\circ}$, откуда $\angle OPB = 60^{\circ}$.

$$BP = \frac{BK}{\sin 60^{\circ}} = \frac{l/2}{\sqrt{3}/2} = l/\sqrt{3}.$$

$$v_B = BP \cdot \omega = \frac{\sqrt{3} l\omega}{3}.$$

2). Движение точки K рассмотрим как сложное движение двумя различными способами (рис. 9).

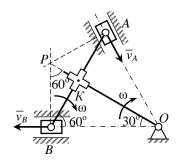


Рис. 8

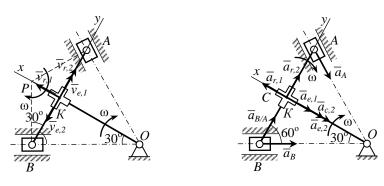


Рис. 9

При 1-м способе относительным движением будет скольжение точки K вдоль стержня OC, а переносным — вращение K вместе с OC. При этом: $\overline{v}_K = \overline{v}_{e,1} + \overline{v}_{r,1}$, где $\overline{v}_{r,1} \mid |OC|$, $\overline{v}_{e,1} \perp OK$,

$$v_{e1} = OK \cdot \omega = (\sqrt{3}/2)l\omega. \tag{11}$$

При 2-м способе относительным движением будет скольжение точки K вдоль стержня AB, а переносным — движение точки K' стержня AB, положение которой в данный момент совпадает с положением точки K. При этом : $\bar{v}_K = \bar{v}_{e,2} + \bar{v}_{r,2}$, где $\bar{v}_{r,2} \mid \mid AB$, $\bar{v}_{e,2} \perp PK$,

$$v_{e,2} = PK \cdot \omega = l\omega/(2\sqrt{3}). \tag{12}$$

Проецируем $\bar{v}_{e,1} + \bar{v}_{r,1} = \bar{v}_{e,2} + \bar{v}_{r,2}$ на наклонные оси x и y:

$$v_{r,1} = 0. (13)$$

$$v_{e1} = -v_{e2} + v_{r2}. {14}$$

Учитываем (11), (12) в (14):

$$v_{r,2} = v_{e,1} + v_{e,2} = (\sqrt{3}/2)l\omega + l\omega/(2\sqrt{3}) = \frac{2\sqrt{3}}{3}l\omega$$
. (15)

Для ускорений при 1-м способе задания сложного движения точки K получим по теореме Кориолиса (рис. 10): $\overline{a}_K = \overline{a}_{e,1} + \overline{a}_{r,1} + \overline{a}_{c,1}$, где $\overline{a}_{r,1} \mid \mid OC$, ускорение Кориолиса $\overline{a}_{c,1} = 0$ в силу (13), $\overline{a}_{e,1} = \overline{a}_{e,1}^n \uparrow \uparrow \overline{KO}$,

$$a_{e,1} = a_{e,1}^n = OK \cdot \omega^2 = (\sqrt{3}/2)l\omega^2$$
. (16)

При 2-м способе получим: $\overline{a}_K = \overline{a}_{e,2} + \overline{a}_{r,2} + \overline{a}_{c,2}$. Здесь $\overline{a}_{r,2} \mid \mid AB$, направление $\overline{a}_{c,2}$ получаем поворотом $\overline{v}_{r,2}$ на 90^o в направлении ω . Тогда $\overline{a}_{c,2} \uparrow \uparrow \overline{KO}$ и с учетом (15):

$$a_{c,2} = 2\omega v_{r,2} = \frac{4\sqrt{3}}{3}l\omega^2$$
. (17)

Далее, $\overline{a}_{e,2} = \overline{a}_{K'}$.

1-й способ определения $\overline{a}_{K'}$. Так как $\varepsilon_{AB}=0$, то мгновенный центр ускорений стержня AB находится на пересечении линий, проходящих через \overline{a}_A , \overline{a}_B , то есть в точке O. Тогда $\overline{a}_{K'} \uparrow \uparrow \overline{KO}$,

$$a_{e,2} = a_{\kappa'} = OK \cdot \omega^2 = (\sqrt{3}/2)l\omega^2$$
. (18)

2-й способ определения $\overline{a}_{K'}$. При плоскопараллельном движении AB по теореме о сложении ускорений: $\overline{a}_B = \overline{a}_A + \overline{a}_{B/A}$, где $\overline{a}_{B/A} = \overline{a}_{B/A}^n$, а $a_{B/A} = a_{B/A}^n = AB \cdot \omega^2 = l\omega^2$. Векторы \overline{a}_B , \overline{a}_A , $\overline{a}_{B/A}$ лежат на сторонах правильного треугольника, поэтому

$$a_A = a_{B/A} = l\omega^2. (19)$$

(Тот же результат можно получить проецированием на ось, перпендикулярную \overline{a}_B .) Далее,

$$\overline{a}_{K'} = \overline{a}_A + \overline{a}_{K'/A}, \tag{20}$$

Здесь $\overline{a}_{K'/A} = \overline{a}_{K'/A}^n$,

$$a_{K'/A}^{n} = KA \cdot \omega^{2} = (l/2)\omega^{2}$$
. (21)

Проецируем (20) на оси x, y с учетом (19), (21):

$$a_{\nu} = -a_A \sin 60^\circ = -(\sqrt{3}/2)l\omega^2$$
.

$$a_{K^{\prime},y} = -a_{A}\cos 60^{o} + a_{K^{\prime}/A}^{n} = -l\omega^{2}/2 + l\omega^{2}/2 = 0.$$

Отсюда $\overline{a}_{K'} \uparrow \uparrow \overline{KO}$ и $a_{K'} = \left| a_{K',x} \right| = (\sqrt{3}/2)l\omega^2$, что совпадает с (18).

Приравнивая выражения для ускорений при двух способах задания сложного движения точки K, получаем окончательно:

$$\overline{a}_{e,1} + \overline{a}_{r,1} = \overline{a}_{e,2} + \overline{a}_{r,2} + \overline{a}_{c,2}$$
 (22)

Проецируем (22) на ось x:

$$-a_{e,1} + a_{r,1} = -a_{e,2} - a_{c,2}. (23)$$

(Проецируя (22) на у, попутно можно получить $a_{r,2} = 0$.)

Определяем искомое ускорение точки K относительно OC из (23) с учетом (16) – (18):

$$a_{r,1} = a_{e,1} - a_{e,2} - a_{c,2} = \frac{\sqrt{3}}{2}l\omega^2 - \frac{\sqrt{3}}{2}l\omega^2 - \frac{4\sqrt{3}}{3}l\omega^2 = -\frac{4\sqrt{3}}{3}l\omega^2.$$
 (24)

Выражение (24) совпадает по модулю с ответом (10), полученным по аналитическому способу.

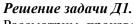
Замечание 1. Наиболее короткое решение получается, если v_B и a_B находить геометрическим способом (v_B с помощью МЦС, а a_B с помощью МЦУ: $a_B = BO \cdot \omega^2 = l\omega^2$), а далее, используя это, определять a_r аналитическим способом.

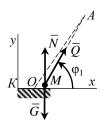
Замечание 2. Соотношение (13) следует также и из аналитического способа. При $\phi = \pi/3$ из (8) получим с учетом (4):

$$\dot{s} = \frac{l\omega}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} - \omega l \cdot \frac{1}{2} = 0.$$

Траектория точки K имеет достаточно сложный вид. Рассматриваемый в задаче момент времени соответствует наиболее удаленному от точки O положению крестовины K. Поэтому $v_{r,1}=0$. Но, так как траектория имеет закругление и скорость точки K в этом положении не равна нулю, то искомое $a_{r,1} \neq 0$ и $\overline{a}_{r,1} \uparrow \uparrow \overline{KO}$.

Omsem. 1).
$$v_B = \frac{\sqrt{3} l\omega}{3}$$
. 2). $a_r = \frac{4\sqrt{3} l\omega^2}{3}$.





Рассмотрим произвольное положение точки M на площадке. В треугольнике OMA сторона OM, $OM \le \delta$, пренебрежимо мала по сравнению со стороной OA (рис. 11). Поэтому угол ϕ_1 между MA и осью x можно принять равным $\phi = \omega t$. Учтем $\overline{Q} \uparrow \uparrow \overline{MA}$. Условие неотрыва точки M от поверхности:

Рис. 11

$$\sum_{k} F_{ky} = Q \sin \omega t + N - G = 0.$$

$$N = mg - Q \sin \omega t \ge 0$$
.

Это условие выполняется при любом t, так как $Q \le mg$.

Выберем начало оси x в точке K. Запишем дифференциальное уравнение движения точки M вдоль оси x с началом в точке O:

$$m\frac{dv_x}{dt} = Q\cos\omega t. (1)$$

Интегрируем (1) при нулевых начальных условиях x(0) = 0, $v_x(0) = 0$:

$$m \int_{0}^{v_x} dv_x = Q \int_{0}^{t} \cos \omega t \, dt \,.$$

$$v_x = \frac{Q}{m} \cdot \frac{1}{\omega} \sin \omega t \Big|_{0}^{t} = \frac{Q}{m\omega} \sin \omega t \,.$$

$$\int_{0}^{x} dx = \frac{Q}{m\omega} \int_{0}^{t} \sin \omega t \, dt \,.$$

$$x = \frac{Q}{m\omega} \cdot \frac{1}{\omega} (-\cos \omega t) \Big|_{0}^{t} = \frac{Q}{m\omega^{2}} (-\cos \omega t + 1).$$

Учтем, что в любой момент времени: $-1 \le \cos \omega t \le 1$. При $\cos \omega t = 1$ величина x принимает свое минимальное значение, равное 0, что соответствует крайнему левому положению K точки M.

При $\cos \omega t = -1$ величина x принимает свое максимальное значение, равное $\frac{2Q}{m\omega^2}$. Для того, чтобы точка M не оказалась правее положения L, должно быть $x \le 2\delta$, откуда

$$\frac{2Q}{m\omega^2} \le 2\delta.$$

$$\omega \ge \sqrt{\frac{Q}{m\delta}}$$
.

Замечание. Если начало оси x выбрать в точке O, то интегрирование ДУ происходит при начальных условиях $x(0) = -\delta$, $v_x(0) = 0$, что чуть менее удобно.

Ombem.
$$\omega \ge \sqrt{\frac{Q}{m\delta}}$$
.

Решение задачи Д2.

Так как объем диска 2 в $2^2=4$ раза превосходит объем диска 1, а их плотности одинаковы, то их массы: $m_2=4m_1$. Момент инерции тела относительно вертикальной оси Cz, проходящей через центры обоих дисков:

$$J_{Cz} = J_1 + J_2 = \frac{m_1 r^2}{2} + \frac{m_2 (2r)^2}{2} = \frac{17}{2} m_1 r^2.$$

Отсюда $m_1 = 2J_{C_2}/(17r^2)$. Тогда масса тела:

$$M = m_1 + m_2 = 5m_1 = \frac{10}{17} \frac{J_{Cz}}{r^2} \,. \tag{1}$$

Дифференциальные уравнения плоского движения тела в неподвижной системе координат xy, где x и y сонаправлены \overline{F}_1 и \overline{F}_2 :

$$M\frac{dv_{Cx}}{dt} = F_1(t), \quad M\frac{dv_{Cy}}{dt} = F_2(t),$$
 (2)

$$J_{Cz}\frac{d\omega_z}{dt} = -F_1(t) \cdot r - F_2(t) \cdot 2r, \qquad (3)$$

где ω_z — алгебраическая угловая скорость тела. Обозначим $Q(t) = \int\limits_0^t e^{\sin t} dt$. Так как $\overline{v}_C(0) = 0$, $\omega_z(0) = 0$, то из (2), (3) получим:

$$Mv_{Cx} = \int_{0}^{t} e^{\sin t} dt$$
, $Mv_{Cy} = 2\int_{0}^{t} e^{\sin t} dt$, $J_{Cz}\omega_{z} = -5r\int_{0}^{t} e^{\sin t} dt$.

$$v_{Cx} = \frac{Q(t)}{M}, \quad v_{Cy} = \frac{2Q(t)}{M}, \quad \omega_z = -\frac{5r}{J_{Cz}}Q(t).$$
 (4)

$$v_C = \sqrt{v_{Cx}^2 + v_{Cy}^2} = \frac{\sqrt{5}}{M}Q(t)$$
 (5)

Мгновенный центр скоростей тела P находится на перпендикуляре к \overline{v}_C , с учетом направления угловой скорости по часовой стрелке (рис. 12). Из (4), (5), с учетом (1):

$$CP = \frac{v_C}{|\omega_z|} = \frac{\sqrt{5}}{M} \frac{J_{Cz}}{5r} = \frac{17}{10\sqrt{5}} r.$$
 (6)

Отметим, что положение точки P относительно C не зависит от t .

Для угла наклона α вектора \overline{v}_C к оси x, с учетом (4):

$$tg \alpha = v_{Cy}/v_{Cx} = 2.$$

$$\sin^2 \alpha = 4\cos^2 \alpha = 1 - \cos^2 \alpha.$$

$$\cos \alpha = 1/\sqrt{5}.$$

Уравнение движения невесомой точки A приложения силы \overline{F}_1 : $0=\overline{F}_1+\overline{S}_1$, где \overline{S}_1 — сила натяжения нити, сходящей с диска I. Отсюда $\overline{S}_1=-\overline{F}_1$. Поэтому \overline{S}_1 , а значит и сама нить, со временем остаются параллельны оси

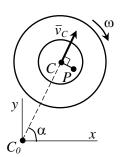


Рис. 12

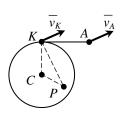


Рис. 13

x (рис. 13). Кроме того, нить нерастяжима. Вывод: участок нити после схода с тела движется поступательно. В силу непрерывности, скорость точки нити на сходе с тела равна скорости точки тела, контактирующей с ней. Поэтому для точки K тела на сходе нити с диска I: $\bar{v}_K = \bar{v}_A$, причем в данный момент: $v_K = v_A = v$.

В треугольнике CPK: CK = r, CP определено в (6), угол $\angle KCP = 90^{\circ} + (90^{\circ} - \alpha) = 180^{\circ} - \alpha$.

$$KP^{2} = CK^{2} + CP^{2} - 2 CK \cdot CP \cdot \cos(180^{\circ} - \alpha) =$$

$$= r^{2} \left[1 + \frac{289}{500} + 2 \cdot \frac{17}{10\sqrt{5}} \cdot \frac{1}{\sqrt{5}} \right] = \frac{1129}{500} r^{2} = 2.258 r^{2}.$$

$$\omega = \frac{v_{K}}{KP} = \frac{v}{\sqrt{2.258} r}.$$

Рис. 14

Замечание I. Скорость точки K можно было выразить не с помощью МЦС, а с использованием теоремы о сложении скоростей при плоском движении: $\overline{v}_K = \overline{v}_C + \overline{v}_{K/C}$ (рис. 14). Из (4), (5) нахо-

дится связь (6) между v_C и ω : $v_C = \frac{17}{10\sqrt{5}} r \omega$.

Учитываем $v_{K/C} = r\omega$. Тогда $\frac{v_C}{v_{K/C}} = \frac{17}{10\sqrt{5}}$. Кроме того, заранее из-

вестны величина v_K , направления \overline{v}_C , $\overline{v}_{K/C}$. Из треугольника, образованного векторами трех скоростей в формуле $\overline{v}_K = \overline{v}_C + \overline{v}_{K/C}$, с использованием теоремы косинусов можно найти выражение для v_K через v_C , $v_{K/C}$. Отсюда определяется $v_{K/C}$ и затем ω .

Замечание 2. Выражения для сил, содержащие $e^{\sin t}$, нет надобности интегрировать, тем более, что для соответствующих интегралов, по всей видимости, нет аналитических выражений.

Замечание 3. Интересно, что хотя числовые данные в условии просты (отношения радиусов и отношения сил 2:1), однако коэффициент $\sqrt{2.258}$ в ответе получается «сложным».

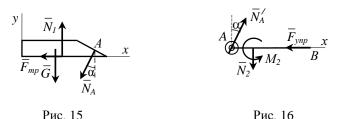
Замечание 4. Как дополнение, отметим следующее. Если проинтегрировать (4) и исключить t, то можно получить уравнение траектории точки C: y=2x, $x\geq 0$.

Для упрощения ось x можно было ввести параллельно вектору $\overline{F} = \overline{F_1} + \overline{F_2}$. Относительно такой системы координат траектория точки C- луч, уравнение которого: y=0, $x\geq 0$. В такой системе координат геометрическое место мгновенных центров скоростей тела при t>0 представляет собой луч, уравнение которого: $y=-\frac{17}{10.\sqrt{5}}r$, x>0.

Ombem.
$$\omega = \frac{v}{\sqrt{2.258} r}$$
.

Решение задачи ДЗ.

1). На клин действуют силы: \overline{N}_A — нормальная реакция со стороны валика, \overline{G} — сила тяжести, \overline{N}_1 — нормальная реакция со стороны горизонтальной плоскости, \overline{F}_{mp} — сила трения, направленная против вектора скорости (рис. 15). Сила трения между валиком и поверхностью скоса клина равна нулю, что следует из записи уравнения моментов для невесомого валика относительно шарнира A.



Дифференциальные уравнения (ДУ) движения клина вдоль x и y:

$$ma_x = -N_A \sin\alpha - F_{mn}. (1)$$

$$0 = N_1 - G - N_A \cos\alpha. \tag{2}$$

Рассмотрим систему, состоящую из стержня и валика (рис. 16). По 3-му закону Ньютона на нее действуют сила \overline{N}_A' , $\overline{N}_A' = -\overline{N}_A$, сила упругости \overline{F}_{ynp} , а также со стороны гладких направляющих (скользящей заделки) сила реакции \overline{N}_2 и момент сил реакции M_2 . Так как весом AB пренебрегаем, теорема о движении центра масс для этой системы в проекции на ось x имеет вид уравнения равновесия:

$$0 = N_A \sin \alpha - F_{vnp}. \tag{3}$$

Из (3):

$$N_A = \frac{F_{ynp}}{\sin \alpha} \ . \tag{4}$$

Из (2) с учетом (4):

$$N_1 = G + N_A \cos \alpha = G + F_{vnp} \operatorname{ctg} \alpha. \tag{5}$$

Тогда из (1), (4):

$$ma_x = -F_{vnp} - F_{mp}. (6)$$

С учетом (5),
$$F_{mp} = fN_1$$
, $F_{ynp} = c\lambda = mg$ получаем из (6):
$$ma_x = -F_{ynp} - f(G + F_{ynp}\operatorname{ctg}\alpha) \ .$$

$$ma_x = -mg - f(mg + mg\operatorname{ctg}\alpha) \ .$$

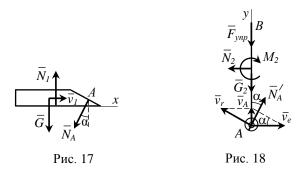
$$a_x = -g \big(1 + f(1 + \operatorname{ctg}\alpha)\big) \ .$$

По модулю:

$$a = g(1 + f(1 + \operatorname{ctg}\alpha)).$$

2). Перемещение x клина отсчитываем от положения клина, при котором пружина недеформирована (рис. 17). ДУ движения клина вдоль горизонтали x:

$$m\frac{d^2x}{dt^2} = -N_A \sin\alpha \ . \tag{7}$$



Теорема о движении центра масс стержня с валиком вдоль вертикали у (рис. 18):

$$m_2 \frac{d^2 y}{dt^2} = N_A \cos \alpha - F_{ynp} - G_2.$$

С учетом $F_{vnp} = cy$, где y – изменение длины пружины стержня:

$$N_{A} = \frac{1}{\cos \alpha} \left(m_{2} \frac{d^{2} y}{dt^{2}} + cy + G_{2} \right).$$
 (8)

Движение точки A рассмотрим как сложное. При этом относительная скорость точки A направлена вдоль поверхности скоса клина, а переносная скорость совпадает со скоростью самого клина. Абсолютная скорость точки A:

$$\overline{v}_A = \overline{v}_e + \overline{v}_r$$

Из прямоугольного треугольника, образованного \overline{v}_A и \overline{v}_e как катетами, видно, что

$$v_A = v_e \operatorname{tg}\alpha \ .$$
 Учтем здесь $v_A = \frac{dy}{dt} \ , \ v_e = v_1 = \frac{dx}{dt} \ :$
$$\frac{dy}{dt} = \frac{dx}{dt} \operatorname{tg}\alpha \ . \tag{9}$$

Интегрируя ДУ (9) при граничном условии, соответствующем положению системы при недеформированной пружине, получим:

$$y = x \operatorname{tg} \alpha . \tag{10}$$

Учтем (10) в (8):

$$N_A = \frac{1}{\cos \alpha} \left(m_2 \frac{d^2 x}{dt^2} \operatorname{tg} \alpha + cx \operatorname{tg} \alpha + G_2 \right). \tag{11}$$

Подставим (11) в (7):

$$m\frac{d^2x}{dt^2} = -\left(m_2\frac{d^2x}{dt^2}\operatorname{tg}\alpha + cx\operatorname{tg}\alpha + G_2\right)\operatorname{tg}\alpha.$$

$$(m+m_2\operatorname{tg}^2\alpha)\frac{d^2x}{dt^2} + cx\operatorname{tg}^2\alpha = -G_2\operatorname{tg}\alpha.$$
(12)

Уравнение (12) имеет вид ДУ свободных колебаний при действии обобщенной постоянной силы, записанной в правой части (12). Известно, что действие постоянной силы смещает центр колебаний (на величину статического отклонения, в нашем случае под действием силы тяжести стержня), но не влияет на их круговую частоту k и период T, которые будут такими же, как для соответствующего однородного ДУ:

$$(m + m_2 \lg^2 \alpha) \frac{d^2 x}{dt^2} + cx \lg^2 \alpha = 0.$$

$$\frac{d^2 x}{dt^2} + \frac{c}{m \operatorname{ctg}^2 \alpha + m_2} x = 0.$$

$$T = \frac{2\pi}{k} = 2\pi \sqrt{\frac{m \operatorname{ctg}^2 \alpha + m_2}{c}}.$$

Перемещение клина от начального равновесного положения до крайнего правого положения соответствует четверти полного колебания. Искомое время движения равно четверти периода колебаний:

$$t_1 = \frac{T}{4} = \frac{\pi}{2} \sqrt{\frac{m \cot^2 \alpha + m_2}{c}}$$
.

Замечание 1. Соотношение (10) можно было получить также аналитическим способом, рассматривая лишь перемещения, для чего потребовался бы дополнительный рисунок.

Замечание 2. Хотя в решении используется ДУ свободных колебаний, было бы несколько некорректно говорить, что клин «совершает свободные колебания», что подразумевало бы неограниченные во времени колебания. Дело в том, что после половины полного колебания стержень продолжит двигаться вниз уже замедленно, и клин перестанет контактировать с валиком A, далее двигаясь влево равномерно.

На участке движения, рассматриваемом в задаче, движение клина вправо замедленное. Поэтому контакт клина с валиком сохраняется.

Замечание 3. Как известно, период свободных колебаний не зависит от величины начальной скорости (она не задана в условии).

Omsem. 1).
$$a = g(1 + f(1 + \operatorname{ctg}\alpha))$$
. 2). $t_1 = \frac{\pi}{2} \sqrt{\frac{m \operatorname{ctg}^2 \alpha + m_2}{c}}$.



Рис. 19

Решение задачи Д4.

1). В силу $R = BC \cdot \sin \alpha$ замечаем из рисунка в условии задачи, что нижняя точка маховика находится на одной горизонтали с точкой C.

В момент, когда точка B окажется в нижнем положении, точка A также будет в своем нижнем положении

(рис. 19). При этом $\bar{v}_A \uparrow \uparrow \bar{v}_C$, а перпендикуляры к этим векторам различны. Значит, твердое тело ABC в данный момент совершает мгновенное поступательное движение. При этом

$$v_B = v_A = R\omega. (1)$$

Кинетическая энергия системы складывается из кинетических энергий маховика и материальной точки *B*. С учетом (1) получим:

$$T = \frac{J_{z,max}\omega^2}{2} + \frac{mv_B^2}{2} = \frac{MR^2\omega^2}{2} + \frac{mv_B^2}{2} = \frac{(M+m)v_B^2}{2}.$$
 (2)

Вначале точка B находилась на одной горизонтали с точкой O, то есть выше точки C на величину R. В конечном положении точка B находится выше точки C на величину h, где h – высота в треугольнике ABC, опущенная из вершины B.

Сумма работ внешних сил системы:

$$\sum_{k} A_k^e = A_G = mgH_B = mg(R - h), \qquad (3)$$

Найдем h из равнобедренного треугольника ABC:

$$h = AB \cdot \sin(\alpha/2) = 2R\sqrt{\frac{1 - \cos \alpha}{2}} = R\sqrt{2 - \sqrt{3}} . \tag{4}$$

Сумма работ внутренних сил $\sum_k A_k^i = 0$.

С учетом (2), (3), (4) теорема об изменении кинетической энергии для всей системы имеет вид:

$$\frac{(M+m)v_B^2}{2} = mg\bigg(R - R\sqrt{2 - \sqrt{3}}\bigg).$$

Отсюда получаем:

$$v_B = \sqrt{\frac{2\bigg(1-\sqrt{2-\sqrt{3}}\bigg)\,mgR}{(M+m)}} \ .$$

2). При l > 0 условие задачи о том, что спортсмен обеспечивает поступательность своего движения своими усилиями и с помощью

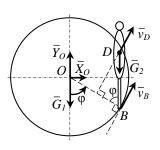


Рис. 20

встроенного механизма, является необходимым для преодоления возникающих инерционных сил. В данном случае сумма работ внутренних сил системы: $\sum_k A_k^i \neq 0$.

Поэтому эффективно применить теорему об изменении кинетической энергии для определения v_R не удается.

Применим теорему об изменении кинетического момента механической системы относительно неподвижной оси Oz, в записи которой внутренние силы не участвуют.

Будем отсчитывать угол ϕ от вертикали против часовой стрелки (на рис. 20 для удобства записи изменены реальные пропорции объектов). Для произвольного положения системы формально направим \bar{v}_B в соответствии с этим направлением отсчета. Тогда $v_B = R\dot{\phi}$. Так как спортсмен движется поступательно, то $\bar{v}_D = \bar{v}_B$ и

$$v_D = R\dot{\varphi} \,. \tag{5}$$

Кинетический момент для маховика при его вращательном движении:

$$K_{Oz.1} = J_z \dot{\varphi} = MR^2 \dot{\varphi} . \tag{6}$$

Кинетический момент для спортсмена при его поступательном движении с учетом (5):

$$K_{O_{z},2} = M_{O_{z}}(m\bar{v}_{D}) = mR\dot{\varphi} \cdot (R - l\cos\varphi). \tag{7}$$

Кинетический момент системы с учетом (6), (7):

$$K_{O_{z}} = K_{O_{z,1}} + K_{O_{z,2}} = (M+m)R^{2}\dot{\varphi} - mRl\,\dot{\varphi}\cos\varphi$$
. (8)

Теорема об изменении кинетического момента получает вид:

$$\frac{dK_{Oz}}{dt} = M_{Oz}(\overline{G}_2) .$$

$$\frac{d}{dt}\left((M+m)R^{2}\dot{\varphi} - mRl\,\dot{\varphi}\cos\varphi\right) = -mgR\sin\varphi. \tag{9}$$

$$\frac{d}{dt}((M+m)R\dot{\varphi}-ml\dot{\varphi}\cos\varphi) = -mg\sin\varphi.$$

$$(M+m)R\ddot{\varphi}-ml(\ddot{\varphi}\cos\varphi-\dot{\varphi}^2\sin\varphi)=-mg\sin\varphi.$$

$$\ddot{\varphi} = -\frac{m(l\dot{\varphi}^2 + g)\sin\varphi}{(M+m)R - ml\cos\varphi}.$$
 (10)

Отметим, что в силу условия задачи l < (M+m)R/m, а также $\cos \phi \le 1$, знаменатель правой части в (10) строго больше нуля.

Используем представление:

$$\ddot{\varphi} = \frac{d\dot{\varphi}}{dt} = \frac{d\dot{\varphi}}{d\varphi} \cdot \frac{d\varphi}{dt} = \dot{\varphi}\frac{d\dot{\varphi}}{d\varphi} .$$

Учтем это в (10) и затем разделим переменные ф и ф:

$$\frac{\dot{\varphi}d\dot{\varphi}}{l\dot{\varphi}^2 + g} = -\frac{m\sin\varphi d\varphi}{(M+m)R - ml\cos\varphi}.$$
 (11)

Произведем замены переменных:

$$u = \dot{\varphi}^2, \ w = \cos \varphi.$$

$$du = 2\dot{\varphi} d\dot{\varphi}, \ dw = -\sin \varphi d\varphi.$$
(12)

Тогда получим из (11):

$$\frac{du}{2(lu+g)} = \frac{m\,dw}{(M+m)R-ml\,w}\,. (13)$$

С учетом (12) в начальный момент времени при $\phi = \pi/2$: u = 0, $w = \cos(\pi/2) = 0$. В конечный момент при $\phi = 0$: $u = \omega_1^2$, $w = \cos 0 = 1$, где ω_1 – угловая скорость маховика в момент, когда точка B оказывается в нижнем положении. Приводим (13) к удобному для интегрирования виду:

$$\frac{du}{u+(g/l)} = -\frac{2dw}{w-\frac{(M+m)R}{ml}}.$$

Перед интегрированием для удобства записи введем коэффициент:

$$k = \frac{(M+m)R}{ml} \,. \tag{14}$$

Отметим, что k > 1. Тогда получим:

$$\int_{0}^{\omega_{1}^{2}} \frac{du}{u + (g/l)} = -2 \int_{0}^{1} \frac{dw}{w - k}.$$
 (15)

Знаменатель в левой части (15) строго положителен. Из k > 1 и $w \le 1$ следует, что знаменатель в правой части (15) строго отрицателен и при интегрировании учет модуля меняет знак этого выражения. Тогда из (15):

$$\ln(u + (g/l)) \Big|_{0}^{\omega_{l}^{2}} = -2\ln(k - w) \Big|_{0}^{1}.$$

$$\ln\left(\frac{\omega_{l}^{2} + (g/l)}{(g/l)}\right) = -2\ln\left(\frac{k - 1}{k}\right).$$

$$\ln\left(\frac{\omega_{l}^{2} + (g/l)}{(g/l)}\right) = \ln\left(\frac{k}{k - 1}\right)^{2}.$$

$$\frac{\omega_{l}^{2} + (g/l)}{(g/l)} = \frac{k^{2}}{(k - 1)^{2}}.$$

$$\omega_{l}^{2} = \frac{g}{l}\left(\frac{k^{2}}{(k - 1)^{2}} - 1\right).$$

$$\omega_{l}^{2} = \frac{g}{l}\cdot\frac{2k - 1}{(k - 1)^{2}}.$$

$$\omega_{l} = \frac{1}{k - 1}\sqrt{\frac{(2k - 1)g}{l}}.$$
(16)

Тогда искомая скорость точки B в нижнем положении:

$$v_B = R\omega_1 = \frac{R}{k-1} \sqrt{\frac{(2k-1)g}{l}} ,$$

где k определен в (14).

Замечание 1. Покажем, что если в (16) перейти к пределу при $l \to 0$, получим соотношение для случая l=0, следующее из теоремы об изменении кинетической энергии с учетом (2) и $A_G=mgR$:

$$\omega_1^2 = \frac{2mg}{R(M+m)} \,. \tag{17}$$

Действительно, обозначим $k = \frac{b}{l}$, где $b = \frac{(M+m)R}{m}$. Тогда из (16):

$$\lim_{l \to 0} \omega_1^2 = \lim_{l \to 0} \left(\frac{g}{l} \cdot \frac{2k - 1}{(k - 1)^2} \right) = \lim_{l \to 0} \left(\frac{2g}{l} \cdot \frac{(b/l) - 0.5}{((b/l) - 1)^2} \right) =$$

$$=\lim_{l\to 0}\left(\frac{2g}{l}\cdot\frac{(b/l)}{(b/l)^2}\right)=\frac{2g}{b}=\frac{2mg}{R(M+m)}.$$

Это выражение совпадает с (17).

Замечание 2. Условие l < (M+m)R/m, которое позволяет успешно проинтегрировать ДУ в рамках модели 3, на практике создает заметные ограничения. Если считать, что R=0.3 м, масса маховика (инерционная масса для электромагнитного тренажера) M=30 кг, масса спортсмена m=60 кг, то получим ограничение $l < (30+60)\cdot 0.3/60$ (м), т.е. l < 0.45 м. Такое возможно, если спортсмен сидит на педали на согнутой ноге.

Замечание 3. Задачу можно было бы сформулировать и без условия наличия специального механизма, обеспечивающего горизонтальность педали. Можно представить, что спортсмен опирается ногой на педаль, жестко прикрепленную к маховику, которая вначале наклонена к горизонту под углом 60° , а в конце движения после поворота на прямой угол окажется под углом 30° . При этом носок спортсмена вначале вытянут вниз, а в конце приподнят. При такой постановке задачи нужно оговорить условие пренебрежения массой стопы и ее длиной.

Omsem. 1).
$$v_B = \sqrt{\frac{2(1-\sqrt{2-\sqrt{3}}) mgR}{(M+m)}}$$
.

2).
$$v_B = \frac{R}{k-1} \sqrt{\frac{(2k-1)g}{l}}$$
, где $k = \frac{(M+m)R}{ml}$.

Замечание κ задачам Д1-Д4. Интересно, что все четыре задачи по динамике связаны с периодическим характером изменения тех или иных величин.

В задаче Д1 сама сила постоянна, но периодическим образом изменяется проекция действующей силы, что приводит к гармоническим

колебаниям. В задаче Д2 периодически меняются силы, однако само движение не имеет характер колебаний. В задаче Д3, постановка которой наиболее близка к классическим постановкам задач о колебаниях, реализуется лишь четверть полного колебания. В задаче Д4 движение с течением времени также получит колебательный характер: после прохождения нижнего положения точка B через какое-то время окажется на первоначальной высоте, затем начнется обратное движение и так далее.

При этом неявном сходстве все четыре задачи в силу различных особенностей условий решаются совершенно по-разному.