Аннотация к рабочей программе дисциплины

Математические методы моделирования и прогнозирования

Направление подготовки: 15.04.04 Автоматизация технологических процессов и производств

Направленность (профиль): Автоматизация технологических процессов и производств

Квалификация выпускника: магистр

Цель освоения дисциплины: изучение методов решения уравнений в частных производных, аналитических и численных, и формирование навыков использования их в научных исследованиях и в инженерных задачах.

Объем дисциплины: 3 з.е., 108 час.

Семестр: 1

Краткое содержание основных разделов дисциплины:

№ п/п	Основные разделы	
раздела	дисциплины	Краткое содержание разделов дисциплины
1		Эксперимент и математическая модель объекта. Адекватность модели. Методы решения краевых задач. Эксперимент и математическая модель процессов взаимодействия элементов аквакультур. Математическая модель водных биоресурсов и аквакультур. Начальные и граничные условия
		задач.
	Задачи, приводящие к уравнениям гиперболического типа	Уравнения гиперболического типа. Граничные и начальные условия для уравнения колебания струны. Решение уравнения колебания струны методом Даламбера в случае бесконечной струны. Физическая интерпретация решения. Решение уравнений колебания для полуограниченной струны с помощью формулы Даламбера. Решение уравнения колебаний методом разделения переменных. Решение неоднородного уравнения методом Фурье. Собственные значения и собственные функции краевой задачи.
	уравнениям эллиптического и параболического типа	Задачи, приводящие к уравнениям эллиптического типа. Фундаментальные решения уравнения Лапласа. Решение задачи Дирихле для круга. Решение уравнения Лапласа в цилиндрических координатах. Уравнение Бесселя. Решение однородного уравнения теплопроводности методом разделения переменных. Решение неоднородного уравнения теплопроводности методом разделения переменных. Распространение тепла на неограниченном стержне.
4	Численные методы решения	Численные и аналитические методы решения

кра	евых задач	уравнений в частных производных. Построение
	1 SUAU 1	разностных схем для уравнений в частных
		производных первого и второго порядка. Задача
		Коши и краевая задача для прямоугольной
		области. Устойчивость решения разностных
		уравнений к малым изменениям начальных
		условий и правых частей. Сходимость решения
		разностного уравнения к точному решению
		исходного уравнения. Решение систем УЧП при
		помощи ANSYS

Форма промежуточной аттестации: экзамен