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Some eigenvalue matrix models possess an interesting property: one can manifestly define the basis 
where all averages can be explicitly calculated. For example, in the Gaussian Hermitian and rectangular 
complex models, averages of the Schur functions are again expressed through the Schur functions. 
However, so far this property remains restricted to very particular (e.g. Gaussian) measures. In this paper, 
we extend this observation to unitary matrix integrals, where one could expect that this restriction is 
easier to lift. We demonstrate that this is indeed the case, only this time the Schur averages are linear 
combinations of the Schur functions. Full factorization to a single item in the sum appears only on the 
Miwa locus, where at least one half of the time-variables is expressed through matrices of the same 
size. For unitary integrals, this is a manifestation of the de Wit-t’Hooft anomaly, which prevents the 
answer to be fully analytic in the matrix size N . Once achieved, this understanding can be extended 
back to the Hermitian model, where the phenomenon looks very similar: beyond Gaussian measures 
superintegrability requires an additional summation.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Matrix models play a special role in theoretical physics, because they are the simplest prototypes of the full string theory. As any 
integrals, their partition functions are invariant under the change of integration variables, but, in this case, the corresponding Ward 
identities are especially simple, and acquire the form of linear Virasoro-like constraints, which further imply a hidden integrability, i.e. 
bilinear Hirota-type identities [1]. In fact, this is not the end of the story: the most interesting classes of matrix models possess an 
even stronger feature of superintegrability [16], that is, in a certain full basis all the correlation functions are explicitly calculable (see 
many examples in [2–23], and also some preliminary results in [25–29]). This resembles emergence of closed orbits for the motion in 
the Coulomb and harmonic oscillator fields, and the name superintegrability is borrowed from those well-known examples. So far, this 
property was found for peculiar classes of matrix models, see [24] for a brief review. The unitary matrix models did not belong to the list 
in that summary, and in this paper we explain what is the difference. In unitary models, additional time-variables p̄k , which parameterize 
the background potential, appear on equal footing with the ordinary couplings pk , which are used to describe arbitrary correlators. This 
gives a chance to go beyond Gaussian models, towards arbitrary Dijkgraaf-Vafa phases and even further.

In this paper, we study this possibility and demonstrate that, in general, the averages are not just factorized, but are represented as 
series, which get reduced to single terms only at the Miwa locus. Moreover, the formulas are not fully analytic in the matrix size N , a well 
known phenomenon for unitary integrals, sometime called the de Wit-t’Hooft anomaly. It also appears straightforward to describe not only 
the character phase, to which our formalism is a priori tuned, but also the “opposite” Kontsevich phase, i.e. a kind of a non-perturbative 
expansion.

After this peculiarity of superintegrability is understood, we can return to the Hermitian matrix model and obtain the sum, which 
generalizes the usual factorized expressions of Gaussian averages. A way to cleverly handle such sums and to restore analyticity in N
remains for future analysis.
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Notation. In this letter, one of the main objects are the Schur functions S R(xi) [33], which are symmetric functions of variables xi , and 
are labelled by partitions R . One can equivalently consider them as graded polynomials of power sums pk :=∑i xk

i , we use the notation 
S R{pk} in this case. For an N × N matrix X with the eigenvalues xi so that pk = Tr Xk we will also use the notation S R [X]. For the partition 
R , we denote through lR the number of its parts. Definitions of other functions used in the letter can be found in the short Appendix.

2. The unitary matrix model

The main quantity of our interest in this paper is the partition function of unitary matrix model [30,31]

Z N{p, p̄} :=
∫

[DU ]exp

(∑
k

pkTr Uk

k
+ p̄kTr

(
U †
)k

k

)
(1)

where U is N × N unitary matrix and [dU ] denotes the Haar measure on unitary matrices. Since the integrand depends only on invari-
ant quantities, one can integrate over angular variables to get an eigenvalue model reducing the partition function to an integral over 
the eigenvalues zi of U , which are unimodular numbers, z̄i = 1

zi
. We normalize the measure DU in a way that it includes the normal-

ization factor (the volume of the unitary group U (N)) emerging from this integration over the angular variables. Then, the eigenvalue 
representation of the partition function gets the form [32]

Z N{p, p̄} =
N∏

i=1

∮
|zi |=1

dzi

zi

∣∣∣�(z)
∣∣∣2 exp

(∑
k

pkzk
i

k
+ p̄k

kzk
i

)
= det

1≤i, j≤N
Ci− j{p, p̄} (2)

where �(z) :=∏i< j(zi − z j) is the Vandermonde determinant, and the moment matrix

Ck{p, p̄} :=
∮

dz

z
zk exp

(∑
k

pkzk

k
+ p̄k

kzk

)
(3)

Making use of the formula

exp
(∑

k

pkzk

k

)
=
∑

m

S[m]{p}zm (4)

we can shift the p, p̄-dependence to symmetric Schur polynomials S[m]:

Z N{p, p̄} = det
1≤i, j≤N

Ci− j{p, p̄} = det
1≤i, j≤N

∑
k,l

S[k]{p}S[l]{p̄}Ci− j+k−l{0,0} =

= det
1≤i, j≤N

∑
k,l

S[ j+k]{p}S[i+l]{p̄}Ck−l{0,0} (5)

3. Superintegrability of the unitary matrix model

In fact, since Ck{0, 0} = δk,0, one can further rewrite this sum as (see [34, Eq.(7)])

det
1≤i, j≤N

∑
k

S[ j+k]{p}S[i+k]{p̄} C B=
∑

k1>k2>...>kN

det
1≤i, j≤N

S[ki+ j]{p} · det
1≤i, j≤N

S[ki+ j]{p̄} =
∑

R: lR≤N

S R{p}S R{p̄} (6)

where we used the Cauchy-Binet formula (CB),

det
1≤i, j≤N

(∑
k

Aik Bkj

)
C B=

∑
k1>k2>...>kN

det
1≤i, j≤N

Aik j · det
1≤i, j≤N

Bik j (7)

In the last transition in (9) we changed the variables ki := Ri − i, what allows us to represent the sum as going over partitions R . We also 
used the first Jacobi-Trudi identity

S R{p} = det
i, j

S[Ri−i+ j]{p} (8)

to substitute determinants of symmetric Schur polynomials as generic Schur functions. Thus, we finally obtain

Z N{p, p̄} =
∫

[DU ]exp

(∑
k

pkTr Uk

k
+ p̄kTr

(
U †
)k

k

)
=

∑
R: lR≤N

S R{p}S R{p̄} (9)

Eq. (9) implies that〈
exp

(∑
PkTr Uk

)〉
=

∑
S R{p + P }S R{p̄} =

∑
S Q {P }

∑
S R/Q {p}S R{p̄} (10)
k R: lR≤N Q R: lR≤N

2
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and since〈
exp

(∑
k

PkTr Uk

)〉
=
∑

Q

S Q {P } 〈S Q [U ]〉 (11)

this allows us to get an average of the Schur function:〈
S Q [U ]

〉
=

∑
R: lR≤N

S R/Q {p}S R{p̄} (12)

Likewise,〈
S Q 1 [U ]S Q 2 [U †]

〉
=

∑
R: lR≤N

S R/Q 1{p}S R/Q 2{p̄} (13)

This sum goes over infinite set of arbitrary large partitions R , still it is always convergent. This is not that surprising if one recalls the 
Cauchy identity for the skew Schur functions

∑
R

S R/Q 1{p}S R/Q 2{p̄} = exp

(∑
k

pk p̄k

k

)∑
σ

S Q 1/σ {p̄}S Q 2/σ {p} (14)

This identity expresses the infinite sum over R at the l.h.s. via the finite sum over σ at the r.h.s., and in (13) this infinite sum is further 
restricted to lR ≤ N .

4. Reduction to special Miwa locus

Let us note that the restriction of sums over partitions, lR ≤ N like that in formula (9) can be automatically fulfilled of one performs a 
Miwa transform of the variables pk and restricts the number of Miwa variables by N:

p̄k =
N∑

i=1

xk
i (15)

This is what happens in the Hermitian matrix model: a similar sum for its partition function [13] is not specifically restricted, since the 
summand contains S R {p̄k = N} instead of S R {p̄k} with arbitrary p̄k . The condition p̄k = N means there are only N Miwa variables, xi = 1, 
i ≤ N , and this condition emerges automatically in the model. On contrary, such a condition is not obligatory imposed in the unitary model 
case, which gives a more generic example, but at the price of explicit restriction on the summation domain. However, if one restricts p̄k

to only N (arbitrary) Miwa variables (15), it gives

Z N{p, x} =
∑

R

S R{p}S R(xi) = exp

⎛
⎝∑

k,i

pkxk
i

k

⎞
⎠ (16)

One can also realize this Miwa transform by an N × N matrix X such that p̄k = Tr Xk:

Z N{p, X} =
∫

[DU ]exp

(∑
k

pkTr Uk

k
+ Tr XkTr

(
U †
)k

k

)
=
∑

R

S R{p}S R [X] = exp

(∑
k

pkTr Xk

k

)
(17)

and similarly for (13). In particular, one can generate from this formula arbitrary correlators of positive powers of U in this restricted 
background of U−1 (it can be also obtained from (12) using (14)):

〈
S Q [U ]

〉
= S Q [X]exp

(∑
k

pkTr Xk

k

)
(18)

or 〈〈
S Q [U ]

〉〉
= S Q [X] (19)

for the normalized correlators. This brings us back to the factorized form of the Schur averages without summation like the Hermitian 
and complex model cases [13].

In fact, one can naturally consider even a more restrictive case of pk also parameterized by N Miwa variables: pk =∑i yk
i (or pk =

Tr Y k), it gives

Z N{y, x} =
∑

R

S R(yi)S R(xi) =
N∏
i, j

1

1 − xi y j
(20)

Thus, the restriction to N Miwa variables makes the expressions too trivial.
3



A. Mironov, A. Morozov and Z. Zakirova Physics Letters B 831 (2022) 137178
5. A more general model: switching on background fields

Consider now a more general model with the partition function depending on two external N × N matrices A and B:

Z N{A, B, p, p̄} :=
∫

[DU ]exp

(∑
k

pkTr (AU )k

k
+ p̄kTr

(
U † B

)k
k

)
(21)

In fact, this model depends on the matrix of product AB only, this follows from the change of variables U → BU and invariance of the 
Haar measure under this transformation.

In order to solve this model, we use the Cauchy formula in order to expand the r.h.s. into the sum of S R{p}S Q {p̄} and integrate the 
coefficients of expansion over U using the formula [33]∫

[DU ]S R [AU ]S Q [U † B] = S R [AB]
S R{N} δR,Q (22)

In fact, this formula can be used as an alternative to the calculation in (9). Its application to (21) provides the following result:

Z N{A, B, p, p̄} =
∑
P ,Q

S R{p}S Q {p̄} S R [AB]
S R{N} δR,Q =

∑
R: lR≤N

S R{p}S R{p̄} S R [AB]
S R{N} (23)

which reduces to (9) at A = B = I . Similarly to our calculation in the previous subsection, one can immediately obtain now the corre-
sponding correlation functions:

〈
S Q 1 [U ]S Q 2 [U †]

〉
=

∑
R: lR≤N

S R/Q 1{p}S R/Q 2{p̄} S R [AB]
S R{N} (24)

This expression looks like having poles at integer values of N , since

S R{N} =
∏

i, j∈R

(N − i + j) · S R{pk = δk,1} (25)

However, it turns out that these poles do not emerge due to the restriction of the sum to the partitions of lengths not larger than N . 
Indeed, as follows from (25), the pole in N that may come from the diagram R is at most at lR − 1. Hence, the restriction means that 
contributes only the diagrams that do not give rise to a pole at a given N . This simultaneously means that there is no analytic expression 
in N possible for the correlators in this model. This is called de Wit – t’Hooft anomaly [35].

6. BGW model

Choosing pk = δk,1, p̄k = δk,1 gives us the Brezín-Gross-Witten (BGW) model [36] in the character phase, i.e. perturbatively in AB [37]. 
The BGW partition function looks like [37,38]

Z BGW
N {A} :=

∫
[DU ]eTr A(U+U−1) =

∑
R: lR≤N

S R{δk,1}2

S R{N} S R [A2] (26)

and the correlators are

〈
S Q 1 [U ]S Q 2 [U †]

〉
=

∑
R: lR≤N

S R/Q 1{δk,1}S R/Q 2{δk,1} S R [A2]
S R{N} (27)

Using the formula that expresses the skew Schur functions via the shifted Schur functions S∗
Q at the locus pk = δk,1, [39],

S R/Q {δk,1} = S R{δk,1} · S∗
Q (Ri) (28)

one can also rewrite this average in the form〈
S Q 1 [U ]S Q 2 [U †]

〉
=

∑
R: lR≤N

S∗
Q 1

(Ri)S∗
Q 2

(Ri)
S R{δk,1}2

S R{N} S R [A2] (29)

The quantity S R{δk,1} is often denoted by dR .

7. BGW model in Kontsevich phase

An interesting question is how to get an answer in the Kontsevich case [37], i.e. the integral

Z BGW
N {A} :=

∫
[DU ]eTr A(U+U−1) (30)
4
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at large A. For the sake of simplicity, from now on, we assume A is a Hermitian matrix with positive trace. In order for this integral 
expansion at large A to start from 1, we use a peculiar normalization of the integral [37]

Z BGW
N {A}+ := e−2Tr A

√
det(A ⊗ A2 + A2 ⊗ A)

(det A)N

∫
[DU ]eTr A(U+U−1) (31)

Hereafter, we label the partition function Z BGW
N {A} at large values of A, i.e. in the Kontsevich phase, by the subscript +, and, at small 

values, i.e. in the character phase and without the peculiar normalization factor, by the subscript −.

7.1. The case of N = 1

It is instructive to begin from the N = 1 example, where the BGW partition function reduces to a (modified) Bessel function with well 
known expansions in both positive (character phase) and negative (Kontsevich phase) powers of λ.

Indeed, in this case,

Z BGW
N=1 {A}− =

2π∫
0

dφ

2π
e2A cosφ = I0(2A) (32)

and the series in A for the modified Bessel function [40] gives

Z BGW
N=1 {A}− =

∑
k=0

A2k

k!2 (33)

which coincides with (26) at N = 1.
Similarly, using the asymptotic expansion of the modified Bessel function at large A [40], one obtains

Z BGW
N=1 {A}+ = 2

√
Aπe−2A I0(2A) =

∑
k=0

(2k)!2
k!3

( 1

64A

)k =
∑
k=0

(−1)k

k!
�(1/2 + k)

�(1/2 − k)

( 1

4A

)k
(34)

However, the main point is not yet seen at the level of N = 1.

7.2. The case of N = 2: Q Schur versus Schur functions

The most interesting aspect of the story is that expansions at the two phases are drastically different: one, in the character phase, 
is in Schur functions, while another one, in the Kontsevich phase, is reduced to a smaller set of Q -Schur functions [33,41]. To see this 
difference, we should proceed to N = 2. Then, in the character phase, the expansion of the BGW partition function is

Z BGW
N=2 {A}− = 1 + 1

2
(a2

1 + a2
2) + 1

12
(a4

1 + 4a2
1a2

2 + a4
2) = 1 + 1

2
p1 + 1

6
p2

1 − 1

12
p2 (35)

depends on all pk = a2k
1 + a2k

2 and can be expanded into the basis of the Schur functions. At the same time, in the Kontsevich phase (see 
(37)-(39) below),

Z BGW
N=2 {A}+ = ψ1(a1)ψ2(a2) − ψ1(a2)ψ2(a1)

a1 − a2
= 1 + 1

16

(
1

a1
+ 1

a2

)
+ 9

512

(
1

a2
1

+ 2

a1a2
+ 1

a2
2

)
+ . . . =

= 1 + 1

16
p̃1 + 9

512
p̃2

1 + . . . (36)

the dependence on p̃2 := a−2
1 +a−2

2 disappears. Looking at higher terms in the expansion, one observes that actually all the variables with 
even indices, p̃2k drop out. This implies that, in the Kontsevich phase, one has to use a restricted basis of symmetric polynomials that 
depend only on pk with odd k. Such a basis is known, these are Q Schur functions [33,41].

7.3. Generic integer N

The simplest way to obtain the expansion of Z BGW
N {A}+ at generic N is to use a determinant representation [37]:

Z BGW
N {A}+ = deti, j ψi(a j)

�(a)
(37)

where

ψi(a) := 2
√

πai−1/2e−2a Ii−1(2a) (38)

and we denoted through ai the eigenvalues of the matrix A. As we already pointed out, an important property of (37) is that it is a 
function of traces of only odd degrees of the matrix A: p̃2k−1 = Tr A−2k+1. Now, using the asymptotics of the modified Bessel function 
[40]
5
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In(2a) = e2a

2
√

πa

∑
k=0

(−1)k

k!
�(n + 1/2 + k)

�(n + 1/2 − k)

( 1

4A

)k
(39)

one obtains that

Z BGW
N {A}+ = deti, j ψi(a j)

�(a)
=
∑

R∈S P

(
1

32

)|R|
Q R{Tr A−k} Q R{δk,1}3

Q 2R{δk,1}2
(40)

where Q R are the Q Schur functions, and S P means strict partitions, i.e. those with all lines of distinct lengths. This formula was 
conjectured in [42] and later proved in [43].

8. Generalized Itzykson-Zuber model

One can also consider a generalized Itzykson-Zuber integral:

Z I Z
N {A, B, p} :=

∫
[DU ]exp

(∑
k

pkTr (AU BU †)k

k

)
(41)

This model can be also solved in the same way using the formula for the integral [33]∫
[DU ]S R [AU BU †] = S R [A]S R [B]

S R{N} (42)

which is a kind of a “dual” to (22). Applying the Cauchy identity (14) to (41), we obtain

Z I Z
N {A, B, p} =

∑
R

S R{p}
∫

[DU ]S R [AU BU †] =
∑

R: lR≤N

S R{p} S R [A]S R [B]
S R{N} (43)

Using the same trick as before, one can obtain the correlators in the form

〈
S Q [AU BU †]

〉I Z :=
∫

[DU ]S Q [AU BU †]exp

(∑
k

pkTr (AU BU †)k

k

)
=

∑
R: lR≤N

S R/Q {p} S R [A]S R [B]
S R{N} (44)

In fact, this sum is assumed to be automatically reduced to lR ≤ N , since N is also the size of the background matrices A and B , and two 
zeroes in the numerator overweight a single zero in denominator. Hence, the restriction on summation can be omitted.

9. Back to the case of Hermitian model

In the case of Hermitian model [31,32],

ZN{p} :=
∫

ρ(H)dH exp

(∑
k

pkTr Hk

k

)
=

N∏
i=1

∫
ρ(hi)dhi · �2(h)exp

(∑
k

pkhk
i

k

)
= det

1≤i, j≤N
Ci+ j−2{p} (45)

where ρ(h) is a measure, and

Ck{p} :=
∫

hkρ(h)dh exp

(∑
k

pkhk

k

)
(46)

one could make just the same calculation as in (9), see sec. 2.2 of [34]:

Z N{p} = det
1≤i, j≤N

Ci+ j−2{p, p̄} = (−1)
N(N−1)

2 det
1≤i, j≤N

CN−i+ j−1{pk} =

= (−1)
N(N−1)

2 det
1≤i, j≤N

∑
k

S[k]{pk}CN−i+ j+k−1{0} =

= (−1)
N(N−1)

2 det
1≤i, j≤N

∑
k

S[k+i]{pk}CN+ j+k−1{0} C B=

C B= (−1)
N(N−1)

2
∑

k1>k2>...>kN

det
1≤i, j≤N

S[ki+ j]{pk} · det
1≤i, j≤N

CN+ j+ki−1{0} =

= (−1)
N(N−1)

2
∑

R: lR≤N

det
1≤i, j≤N

CN−i+ j+Ri−1︸ ︷︷ ︸
CR

{0} · S R{pk} (47)

The problem is that, in this case, there are no negative degrees of the matrix in the potential in (45) (otherwise, the matrix integral is not 
well-defined), and CR is now a sophisticated function of R:
6
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CR =
∫

xN−i+ j+Ri−1ρ(h)dh (48)

Moreover, the factor ρ(h) can not be ignored: one can not put ρ(h) = 1, as in (9), because then the integral over the eigenvalue h

diverges. In fact, CR can be explicitly calculated for the Gaussian measure ρ(h) = e−h2/2 and is expressed through the Schur functions 
[13]. Moreover, as we already mentioned in sec. 4, this Gaussian CR explicitly vanishes for lR > N , hence the sum in (47) can be extended 
to all R , so that particular averages get factorized. This is how the superintegrability phenomenon looks in the Hermitian case. The 
situation is similar in the complex rectangular model with Gaussian measure [13].

In the unitary case, one does not need ρ(h) �= 1, but the answer involves a non-trivial restriction lR ≤ N in the sum beyond the 
restricted Miwa locus of sec. 4. Still, this extension is quite explicit and easy to handle, unlike (47) with non-Gaussian ρ .

Note that we have come closer to the situation with the Hermitian model by restricting p̄k to a peculiar Miwa locus (15) in sec. 4
above: then unrestricted pk can be used to generate arbitrary correlators of positive powers of U in a restricted background of U−1, (19). 
Not surprisingly, further restriction of pk to a similar peculiar Miwa locus makes the partition function elementary and is not interesting. 
An advantage of the unitary model is a possibility of releasing both pk and p̄k from the Miwa locus, which still remains a challenge in 
the Hermitian and complex rectangular cases. If resolved, it could extend the Hermitian superintegrability to non-Gaussian cases and to 
Dijkgraaf-Vafa phases [44].

10. Conclusion

In this paper, we extended the study of superintegrability to unitary matrix models. We showed that it works exactly in the same way 
as for the Hermitian and rectangular complex models, still some new aspects of the story get revealed by this generalization.

An advantage of unitary models is that the one is in no way restricted to the Gaussian measure, and ρ(z) from (47), while ignored in 
(9), can easily be made non-trivial by choosing appropriate values of p̄k . This can be important for further generalizations, say to torus 
knot model [28,45], where ρ(z) = exp(log2 z), and also the Vandermonde factor in the measure is essentially modified, which needs more 
work to handle.

The partition function of unitary models can be always expanded into Schur polynomials, without a restriction to Gaussian measures 
needed so far in the Hermitian case. However, this decomposition includes an explicit dependence on N through the restriction lR ≤ N in 
the sum over partitions R . This restriction can be lifted if the symmetry between U and U † is broken, and p̄k are restricted to a peculiar 
Miwa locus p̄k = tr X̄k with N × N matrix X , thus the strong N-dependence persists. This is exactly in parallel with Hermitian case, still 
the N dependence now has two different equally efficient descriptions.

Superintegrability can be easily extended from the simplest unitary model to many other more sophisticated examples, see sec. 5–8
above.

Thus the study of unitary models confirms universality of superintegrability, i.e. its applicability to more and more relevant models. At 
the same time, it raises new questions and can help to better understand this mysteriously general property.
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Appendix A

Throughout the paper, we use the skew Schur functions S R/Q {p} [33] defined by

S R{p + p′} =
∑

Q

S R/Q {p′}S Q {p} (49)

and the Q Schur functions [33,41], which are defined as the Hall-Littlewood polynomials at the value of parameter t = −1:

Q R =
⎧⎨
⎩

2lR /2 · HLR(t = −1) for R ∈ SP

0 otherwise
(50)

where S P means strict partitions, i.e. those with all lines of distinct lengths. We fix their normalization as in [18] by the Cauchy identity

∑
R

Q R{p}Q R{p′} = exp

(∑
k

pk p′
k

k + 1/2

)
(51)

At last, we use the shifted Schur functions S∗
R {p}, which can be unambiguously expressed through the shifted power sums [46]

p∗
k :=

∑
i

[
(xi − i)k − (−i)k

]
(52)

if one requires
7
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S∗
μ{p∗

k } = Sμ{p∗} +
∑

λ: |λ|<|μ|
cμλ Sλ{p∗

k }

S∗
μ(Ri) = 0 if μ /∈ R (53)

Their other definitions and properties can be found in [39].
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