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Abstract: The paper is devoted to the normal extensions of discrete semigroups and ∗-homomorphisms
of semigroup C∗-algebras. We study the normal extensions of abelian semigroups by arbitrary groups.
Considering numerical semigroups, we prove that they are normal extensions of the semigroup of non-
negative integers by finite cyclic groups. On the other hand, we prove that if a semigroup is a normal
extension of the semigroup of nonnegative integers by a finite cyclic group generated by a single el-
ement then this semigroup is isomorphic to a numerical semigroup. As regard a normal extension
with a generating set, we consider two reduced semigroup C∗-algebras defined by this extension. We
show that there exists an embedding of the semigroup C∗-algebras which is generated by an injective
homomorphism of the semigroups and the natural isometric representations of these semigroups.
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Introduction

The article is devoted to studying the normal extensions of abelian cancellative semigroups and the
embeddings of reduced semigroup C∗-algebras which are generated by the extensions.
One of the sources of motivation of the present article is the results of the theory of operator al-

gebras which concern the embeddings of semigroup C∗-algebras. These results were first obtained by
Coburn [1, 2] and Douglas [3] with the aim of their application to the theory of operator index. These
authors considered the reduced semigroup C∗-algebras C∗r (Γ+) for the semigroups Γ+ that are the pos-
itive cones of ordered semigroups Γ in the additive group of the reals. They showed in particular that,
for every isometric representation of the positive cone Γ+ by nonunitary elements in an arbitrary unital
C∗-algebra A, there exists a unique embedding of the algebra C∗r (Γ+) into A. For the case when Γ+
is the semigroup of nonnegative integers Z+, this result is known in the theory of operator algebras as
Coburn’s Theorem [4, Theorem 3.5.18]. This theorem was generalized in [5, 6] by Murphy to the case
of positive cones in ordered groups and was further developed in the works by Nica [7] as well as by Laca
and Raeburn [8].
In turn, considering the numerical semigroup Z+ \ {1}, Murphy [5] and Jang [9, 10] proved that the

analogous result does not hold for the embeddings of C∗-algebras. This fact initiated the study of the
properties of isometric representations and the structures of semigroup C∗-algebras for the whole class
of the so-called numerical semigroups whose example is given by Z+ \ {1} (see, for instance, [11–13]).
Another source of motivation for this article is the theory of semigroup extensions. As is known,

extensions play an important role in the study of the structure and the characteristics of semigroups;
in particular, their cohomology (see, for instance, [14]). Recall that there are various kinds of extensions
under study semigroups. For instance, one of the first works [15] by Clifford on this topic is devoted
to ideal extensions of semigroups. In [16], Rédei introduced and studied Schreier extensions. In [17, 18],
Gluskin and Perepelitsyn studied normal extensions of semigroups.
The present article is a continuation of the study of the properties of reduced semigroup C∗-algebras

and their involutive homomorphisms which was initiated in [19–29]. It should be noted however that the
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aim of the article is twofold: On the one hand, the article deals with the normal extensions of semigroups
by arbitrary groups. Moreover, some results are obtained on the properties of extensions of Z+. It is
proved in particular that if a semigroup L is a normal extension of Z+ by a finite cyclic group generated
by a single element then L is isomorphic to a numerical semigroup. Conversely, we show that each
numerical semigroup can act as a normal extension of Z+ by a finite cyclic group. On the other hand, for
a normal extension (L, τ, σ) of a semigroup S by an arbitrary group, we consider the question of existence
of an embedding of the semigroup C∗-algebra C∗r (S) into C∗r (L) which is generated by an injective
homomorphism τ : S −→ L of abelian semigroups and the natural isometric representations of S and L
in the corresponding semigroup C∗-algebras. In the article, we answer the question in the affirmative
for some class of normal extensions. Namely, we prove a theorem on the embeddings of the semigroup
C∗-algebras in the case when the extension (L, τ, σ) admits a generating set. The theorem generalizes
the assertion of [29] for one particular case of an extension of a semigroup S which is defined by means
of a finite cyclic group generated by exactly one element of a semigroup L. Observe for completeness
that if the extension (L, τ, σ) does not admit a generating set then the above-mentioned embedding of
the semigroup C∗-algebras may fail to exist. We illustrate this by an example of a normal extension
of semigroups.

Note that the results of the article are related to the functoriality question for morphisms of semigroup
C∗-algebras which was posed in [30]. Namely, let C∗(P ) denote the universal C∗-algebra of a semigroup P
which is generated by isometries {vp, p ∈ P}. Does a homomorphism ϕ : P −→ Q of cancellative
semigroups induce a morphism of the corresponding semigroup C∗-algebras C∗(P ) −→ C∗(Q) by the
formula vp �→ vϕ(p), p ∈ P?
The article is organized as follows: It consists of an introduction and three sections. Section 1 contains

the necessary information from the theory of semigroup extensions and provides the notion of a normal
extension of a semigroup by a group that admits a generating set. Considering the extensions generated
by a single element, we prove a criterion for the equivalence of normal extensions. In Section 2, we
consider the extensions of Z+ by numerical semigroups with the aid of finite cyclic groups. Section 3 is
devoted to the reduced semigroup C∗-algebras for two semigroups one of which is a normal extension of
the other by means of an arbitrary group. We prove a theorem on the embedding of these semigroup
C∗-algebras.

1. Extensions of Semigroups by Groups

Throughout the article, we let S and L designate the discrete additive cancellative semigroups with
neutral elements. Denote an arbitrary abelian group by Γ. The neutral elements of S, L, and Γ will be
denoted by 0.

The definition of a normal extension of a semigroup is contained in [17, 31]. Let us give the definition
of a normal extension of a semigroup by a group.

Suppose that we have an injective semigroup homomorphism τ : S −→ L and a surjective semigroup
homomorphism σ : L −→ Γ. Refer to the triple (L, τ, σ) as a normal extension of S by Γ if τ(S) is the
full preimage of the neutral element of Γ; i.e., σ−1(0) = τ(S).
Thus, a normal extension can be defined with the use of a short exact sequence

0 −−−→ S
τ−−−→ L

σ−−−→ Γ −−−→ 0.

In this case, the semigroup L is also called an extension of S by Γ.

Two extensions (L, τ, σ) and (L′, τ ′, σ′) of S by Γ are called equivalent if there is a semigroup iso-
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morphism ψ : L −→ L′ making the diagram

L

ψ

��

σ

���
��

��
��

�

S

τ ′ ���
��

��
��

τ

����������
Γ

L′
σ′

���������

(1)

commute.
Obviously, if L is a normal extension by Γ then L is representable as the disjoint union

L =
⊔

γ∈Γ
Lγ , (2)

where Lγ = σ
−1(γ). Note that L0 = τ(S).

Let a set X be such that X ⊂ L \ τ(S) and X ∩ Lγ = {xγ} for every γ ∈ Γ, γ 	= 0. We say that the
extension (L, τ, σ) of S is generated by X if each y ∈ L \ τ(S) is uniquely representable as y = τ(a) + xγ
for some a ∈ S and γ ∈ Γ. In this case every subset Lγ , γ 	= 0, has the form

Lγ = τ(S) + xγ := {τ(a) + xγ | a ∈ S},
and L is representable as the disjoint union

L = τ(S) 

( ⊔

xγ∈X
(τ(S) + xγ)

)
. (3)

If X is finite then we refer to the extension (L, τ, σ) as a finitely generated normal extension. In this
case, Γ is finite.
Distinguish one more class of extensions. Let Γ be a finite cyclic group. Then, up to isomorphism,

Γ = Zn = Z/nZ is the residue class group modulo n. Let a triple (L, τ, σ) be a normal extension of S
by Zn. If there exists x ∈ L \ τ(S) such that every y ∈ L is uniquely representable as

y = τ(a) + kx (4)

for some a ∈ S and k ∈ Z+, 0 ≤ k ≤ n − 1, then we refer to the triple (L, τ, σ) as a normal extension
of S generated by an element x. In this case, L is representable as the disjoint union

L =
n−1⊔

k=0

(τ(S) + kx). (5)

Obviously, a normal extension by Zn generated by a single element is a particular case of a finitely
generated normal extension.
Note that the above extensions with generating sets are Schreier extensions (see [14, 16]).
Henceforth, we denote the elements of Zn by [0]n, . . . , [n− 1]n.
In [29], Gumerov considered the normal extension (Lx, τ, σ) by Zn generated by an element x such

that σ(x) = [m]n, where the numbers m and n are coprime. In the following lemma, we prove that this
property is in fact possessed by every normal extension of the type.

Lemma 1.1. Let (L, τ, σ) be a normal extension of S by Zn which is generated by an element x.
Then the following hold:
(1) σ(x) = [m]n, where m and n are coprime;
(2) nx ∈ τ(S).
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Proof. (1): Let σ(x) = [m]n, where m and n are not coprime. Since σ is a surjection, there is y ∈ L
such that σ(y) = [1]n. By the definition of a normal extension generated by x, we see that y = τ(a)+ kx
for some a ∈ S and k ∈ Z+, 0 ≤ k ≤ n−1. Then σ(kx) = [1]n. On the other hand, σ(kx) = [km]n. Thus,
km − nl = 1 for some l ∈ N, which contradicts the fact that m and n have a common divisor different
from unity.
(2): Indeed, since σ(nx) = [nm]n = [0]n and σ

−1([0]n) = τ(S); therefore, nx ∈ τ(S). �
The following assertion contains sufficient conditions for the two extensions generated by one element

to equivalent.

Proposition 1.1. Let (L, τ, σ) and (L′, τ ′, σ′) be two normal extensions of S by Zn which are
generated by elements x and x′ such that σ(x) = σ′(x′). Let τ−1(nx) = (τ ′)−1(nx′). Then the extensions
(L, τ, σ) and (L′, τ ′, σ′) are equivalent.
Proof. Construct some semigroup isomorphism ψ : L −→ L′ such that diagram (1) commutes.

By the definition of a normal extension generated by a single element, every element y ∈ L is uniquely
representable in the form (4). Put ψ(y) = τ ′(a) + kx′. Owing to the existence of b ∈ S such that
nx = τ(b) and nx′ = τ ′(b), we see that ψ(nx) = ψ(τ(b)) = τ ′(b) = nx′. Therefore, ψ is a semigroup
homomorphism. The uniqueness of the corresponding representations (4) of the elements of L and L′
implies that ψ is an isomorphism.
Check that diagram (1) commutes. The equality ψ◦τ = τ ′ is obvious. Verify that σ′ ◦ψ = σ. Indeed,

since σ(x) = σ′(x′); therefore, for every y ∈ L from (4) we infer that
(σ′ ◦ ψ)(y) = (σ′ ◦ ψ)(τ(a) + kx) = σ′(τ ′(a) + kx′) = kσ′(x′) = kσ(x) = σ(y). �

The converse to Proposition 1.1 fails in general. But if there is no nontrivial subgroup of S then we
have

Proposition 1.2. Let a semigroup S be such that its every semigroup is isomorphic to the trivial
group. Let (L, τ, σ) and (L′, τ ′, σ′) be the two equivalent normal extensions of S by Zn which are generated
respectively by elements x and x′ such that σ(x) = σ′(x′). Then (τ)−1(nx) = (τ ′)−1(nx′).
Proof. Suppose that there exists a semigroup isomorphism ψ : L −→ L′ making diagram (1)

commute. Then ψ ◦ τ = τ ′, i.e., ψ(τ(a)) = τ ′(a) for every a ∈ S. Show that ψ(x) = x′. Suppose that
ψ(x) = τ ′(c) + kx′ for some c ∈ S and 0 ≤ k ≤ n − 1. Since diagram (1) commutes, we infer that
σ′(ψ(x)) = σ(x) = [m]n, where m ∈ N, 1 ≤ m ≤ n− 1. On the other hand, σ′(ψ(x)) = σ′(τ ′(c) + kx′) =
[km]n. Thus, [m]n = [km]n or (k − 1)m = ln for some l ∈ N. By Lemma 1.1, m and n are coprime.
Therefore, reckoning with the condition 0 ≤ k ≤ n − 1, we see that [m]n = [km]n holds only if k = 1.
Consequently, ψ(x) = τ ′(c) + x′. We can prove similarly that ψ−1(x′) = τ(d) + x for some d ∈ S. Then

x′ = ψ(τ(d) + x) = τ ′(d) + τ ′(c) + x′.
So, τ ′(d) + τ ′(c) = 0 and d + c = 0. This gives that d = c = 0. Otherwise, S has a nontrivial
subgroup. Thus, ψ(x) = x′. It remains to observe that if nx = τ(b) and nx′ = τ ′(b′) for b, b′ ∈ S then
τ ′(b) = ψ(τ(b)) = ψ(nx) = nx′ = τ ′(b′). Hence, b = b′ by the injectivity of τ . �
Closing this section, we give the example showing that we cannot omit in Proposition 1.2 the re-

quirement that S must have no nontrivial subgroup.

Example 1.1. Let L = Z3 × Z2. Define the injective group homomorphisms

τ : Z3 −→ L : [k]3 �→ ([k]3, [0]2), τ ′ : Z3 −→ L : [k]3 �→ ([3− k]3, [0]2)
and the surjective group homomorphism

σ : L −→ Z2 : ([k]3, [l]2) �→ [l]2.
Then (L, τ, σ) and (L, τ ′, σ) are the two normal extensions of Z3 by Z2 which are generated by x =
([1]3, [1]2). If we consider the isomorphism ψ : L −→ L defined by ψ([k]3, [l]2) = ([3 − k]3, [l]2) then
diagram (1) commutes, and so the extensions (L, τ, σ) and (L, τ ′, σ) are equivalent. Moreover, (τ)−1(2x) 	=
(τ ′)−1(2x).
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2. Extensions and Numerical Semigroups

In this section, we consider as S the set of nonnegative integers Z+ with the natural addition. To
formulate further results, we recall the definition of a numerical semigroup. The facts of the theory
of numerical semigroups can be found, for instance, in [32].
A numerical semigroup is a nontrivial subsemigroup of Z+ containing 0 and such that the greatest

common divisor of its elements is 1.
We can give the equivalent definition of a numerical semigroup as a subsemigroup of Z+ whose

complement in Z+ is finite. The following result is proved in [32]: Each nontrivial semigroup with zero
in Z+ is a numerical semigroup up to isomorphism.
It is known that every numerical semigroup has finitely many generators. Following [32], let Zn1,...,np

stand for the numerical semigroup that is generated by {n1, . . . , np}. Thus,

Zn1,...,np =

{ p∑

i=1

aini | ai ∈ Z+
}
.

Note that the representation of an element of a numerical semigroup Zn1,...,np as a sum
∑p

i=1 aini is
nonunique.
In the following assertion, we prove that each numerical semigroup Zn1,...,np can act as a normal

extension of Z+ by Zn, where n is an arbitrary element of Zn1,...,np .

Proposition 2.1. For every numerical semigroup Zn1,...,np and each n ∈ Zn1,...,np , there exist
an injective semigroup homomorphism τ : Z+ −→ Zn1,...,np and a surjective semigroup homomorphism
σ : Zn1,...,np −→ Zn such that the short sequence

0 −−−→ Z+
τ−−−→ Zn1,...,np

σ−−−→ Zn −−−→ 0

is exact.

Proof. Define the homomorphisms τ : Z+ −→ Zn1,...,np and σ : Zn1,...,np −→ Zn as follows:

τ(k) = nk, σ(z) = [z]n

for all k ∈ Z+ and z ∈ Zn1,...,np . Obviously, τ is injective and σ is surjective. It is not hard to see that
σ−1([0]n) = τ(Z+). Therefore, the triple (Zn1,...,np , τ, σ) is a normal extension of Z+ by Zn. �
Henceforth, we consider numerical semigroups with two generators. The following proposition con-

tains a necessary condition for such a numerical semigroup to be a normal extension of Z+ which is
generated by a single element.

Proposition 2.2. Suppose that a triple (Zn1,n2τ, σ) is a normal extension of Z+ by Zn which is
generated by a single element. Then either n = n1 or n = n2.

Proof. Let x be a generating element of the extension (Zn1,n2 , τ, σ). Then every element z ∈ Zn1,n2
is uniquely representable as

z = τ(k) + lx = kτ(1) + lx,

where k, l ∈ Z+, 0 ≤ l ≤ n− 1. Since τ(1), x ∈ Zn1,n2 , we have
τ(1) = a1n1 + b1n2, x = a2n1 + b2n2

for some a1, a2, b1, b2 ∈ Z+. Thus, n1 = ka1n1 + la2n1 + kb1n2 + lb2n2 for some k and l. This gives the
two systems of equalities: ka1 = 1, la2 = 0, kb1 = 0, lb2 = 0 or ka1 = 0, la2 = 1, kb1 = 0, lb2 = 0.
From these equalities it is easy to conclude that either τ(1) = n1 or x = n1. Taking n2 instead of n1,
we conclude that either τ(1) = n2 or x = n2. Thus, each z ∈ Zn1,n2 is uniquely representable either as
z = kn1 + ln2 or z = kn2 + ln1, where k, l ∈ Z+, 0 ≤ l ≤ n− 1. In the first case, we obtain an extension
by Zn1 ; and in the second, by Zn2 . �
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In the following examples, we represent the semigroup Z2,3 = Z+ \ {1} as an extension of Z+.
Example 2.1. Let n = 4. Consider the short exact sequence

0 −−−→ Z+
τ−−−→ Z+ \ {1} σ−−−→ Z4 −−−→ 0,

where τ(k) = 4k and σ(m) = [m]4 for all k ∈ Z+ and m ∈ Z+ \ {1}. Then Z+ \ {1} is representable in
the form (3):

Z+ \ {1} = τ(Z+) 
 (τ(Z+) + 2) 
 (τ(Z+) + 3) 
 (τ(Z+) + 5).
The extension is finitely generated.

Example 2.2. Let n = 3. Consider the short exact sequence

0 −−−→ Z+
τ−−−→ Z+ \ {1} σ−−−→ Z3 −−−→ 0,

where τ(k) = 3k and σ(m) = [m]3 for all k ∈ Z+, and m ∈ Z+ \{1}. In this case, the semigroup Z+ \{1}
is representable in the form (5):

Z+ \ {1} = τ(Z+) 
 (τ(Z+) + 2) 
 (τ(Z+) + 2 · 2).
The extension is generated by a single element x = 2.
Example 2.2 is an illustration of the following assertion:

Proposition 2.3. Suppose that a triple (Zn1,n2 , τ, σ) is a normal extension of Z+ by Zn1 , where

τ(k) = kn1, σ(z) = [z]n1

for all k ∈ Z+ and z ∈ Zn1,n2 . Then (Zn1,n2 , τ, σ) is an extension generated by n2.
Proof. Show that each z ∈ Zn1,n2 is uniquely representable as z = kn1 + ln2, where k, l ∈ Z+,

0 ≤ l ≤ n1 − 1. Indeed, since z = sn1 + tn2 for some s, t ∈ Z+, there obviously exist d, l ∈ Z+,
0 ≤ l ≤ n1 − 1, such that z = (s + dn2)n1 + ln2 = kn1 + ln2. Prove that this representation is unique.
Let k1n1 + l1n2 = k2n1 + l2n2 for some k1, k2, l1, l2 ∈ Z+, 0 ≤ l1, l2 ≤ n1 − 1. If l1 = l2 then k1 = k2.
Suppose, for instance, that l2 > l1. Then (k1 − k2)n1 = (l2 − l1)n2. But this contradicts the fact that n1
and n2 are coprime and l2 − l1 < n1. Thus, we have a unique representation of an arbitrary z ∈ Zn1,n2
in the form z = kn1 + ln2 = τ(k) + ln2, where k, l ∈ Z+, 0 ≤ l ≤ n1 − 1. �
In [28], we proposed a construction that enables us to build the normal extensions of semigroups by Zn

which are generated by a single element and gave an example of such an extension for the semigroup
of Z+. Namely, given n,m ∈ N\{1}, we constructed the normal extension (Ln,m, τ, σ) of Z+ by Zn which
is generated by a single element and such that the equation nx = τ(m) is solvable in Ln,m. It has been
announced that Ln,m is isomorphic to a numerical semigroup if and only if the numbers n and m are
coprime.
The following theorem is a generalization of the above assertion:

Theorem 2.1. Suppose that a triple (L, τ, σ) is a normal extension of Z+ by Zn which is generated
by an element x. Let m ∈ N \ {1} be such that

nx = τ(m), σ(x) = [m]n

and let n and m be coprime. Then (L, τ, σ) is equivalent to the extension (Zn,m, τ ′, σ′) of Z+ by Zn such
that

τ ′(k) = kn, σ′(z) = [z]n,

where k ∈ Z+ and z ∈ Zn,m.
Proof. By Proposition 2.3, (Zn,m, τ ′, σ′) is an extension generated by m. Since

σ(x) = [m]n = σ
′(m), τ−1(nx) = {m} = (τ ′)−1(nm),

the extensions (L, τ, σ) and (Zn,m, τ ′, σ′) satisfy the hypotheses of Proposition 1.1. Therefore, they are
equivalent. �
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3. Extensions and Semigroup C∗-Algebras
Let us consider an arbitrary cancellative semigroup P . We write the semigroup operation additively.

Introduce the Hilbert space on P . This is the space l2(P ) of square-integrable complex-valued functions
on P . Denote by ep, p ∈ P , the element of l2(P ) which is defined as

ep(q) :=

{
1 if p = q,

0 if p 	= q,
where q ∈ P . Then {ep | p ∈ P} is an orthonormal basis for l2(P ).
In the algebra of all bounded linear operators B(l2(P )) on l2(P ), consider the C∗-subalgebra C∗r (P )

generated by the set of isometries {Tp | p ∈ P}, where Tp(eq) = ep+q, p, q ∈ P . Note that C∗r (P ) is called
the reduced semigroup C∗-algebra. The identity element of C∗r (P ) will be denoted by I.
Recall the definition of an isometric representation of a semigroup [5]. Let A be a unital C∗-algebra.

A mapping ρ : P −→ A is called an isometric representation if ρ(p)∗ρ(p) = I and ρ(p+ q) = ρ(p)ρ(q) for
all p, q ∈ P . Obviously,

πP : P −→ C∗r (P ) : p �→ Tp (6)

is an isometric representation. We will refer to the representation defined by (6) as the natural represen-
tation of P in C∗r (P ).
Let (L, τ, σ) be a normal extension of S by Γ. Consider the C∗-algebras C∗r (S) and C∗r (L) defined

by {Ta | a ∈ S} and {Ty | y ∈ L} respectively.
In the C∗-algebra C∗r (S), consider all possible products of the operators Ta and T ∗a of the form

V = T inanT
in−1
an−1 . . . T

i1
a1 , (7)

where a1, . . . , an ∈ S, i1, . . . , in ∈ {0, 1}, and T 0aj := Taj , T 1aj := T ∗aj .
The set of all operators of the form (7) constitutes an involutive semigroup which will be denoted

by Mon.
All finite linear combinations of operators of the form (7)

A =
m∑

i=1

αiVi (8)

constitute a dense involutive subalgebra of C∗r (S) which we will denote by P (S).
In the C∗-algebra C∗r (L), consider the subsemigroup Monτ whose elements have the form

Vτ = T
in
τ(an)

T
in−1
τ(an−1) . . . T

i1
τ(a1)

, (9)

where a1, . . . , an ∈ S, i1, . . . , in ∈ {0, 1}, and T 0τ(aj) := Tτ(aj), T
1
τ(aj)

:= T ∗τ(aj). The dense involutive
C∗-algebra C∗r (L) contains the subalgebra P (τ(S)) whose every element is representable as

Aτ =
m∑

i=1

αi(Vi)τ . (10)

Owing to the validity of decomposition (2), l2(L) is representable as the direct sum of subspaces

l2(L) =
⊕

γ∈Γ
Hγ , (11)

where {ey | y ∈ Lγ} is an orthonormal basis for Hγ .
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Lemma 3.1. For every γ ∈ Γ and every a ∈ S, the subspace Hγ is invariant under Tτ(a), and so Hγ

is invariant under every Vτ ∈ Monτ and every linear combination Aτ ∈ P (τ(S)).
Proof. Indeed, let γ 	= 0. Calculate Tτ(a) at the basis vectors ey ∈ Hγ . We obtain Tτ(a)ey =

eτ(a)+y ∈ Hγ since σ(τ(a) + y) = σ(y) = γ. �
The following result was announced in [28]: Let (L, τ, σ) be a normal extension of S by Zn which is

generated by a single element. Then there is an embedding of semigroup C∗-algebras ϕ : C∗r (S) −→ C∗r (L)
generated by an isometric representation of S. The proof of this theorem is in [29]. Below we prove
a generalization of this theorem for a normal extension of a semigroup by a group admitting an arbitrary
generating set.

Theorem 3.1. Let (L, τ, σ) be a normal extension of S by a group Γ with a generating set. Let
πS : S −→ C∗r (S) and πL : L −→ C∗r (L) be natural isometric representations of S and L. Then there
exists a unique unital isometric ∗-homomorphism ϕ : C∗r (S) −→ C∗r (L) such that the diagram

S

πS
��

τ �� L

πL
��

C∗r (S) ϕ
�� C∗r (L)

commutes; i.e., ϕ ◦ πS = πL ◦ τ .
Proof. We must show that the mapping ϕ, defined on the generators of the C∗-algebra C∗r (S)

by the formulas
ϕ(Ta) = Tτ(a), ϕ(T ∗a ) = T

∗
τ(a), (12)

can be extended to the whole C∗-algebra C∗r (S).
Let X ⊂ L \ τ(S) be a generating set for the extension (L, τ, σ). Recall that X consists of all

elements xγ such that X ∩ Lγ = {xγ} for every γ ∈ Γ, γ 	= 0.
Consider l2(L) and a subspace Hγ , γ ∈ Γ, of (11). By the definition of a normal extension with

a generating set, each y ∈ L\τ(S) is uniquely representable in the form y = τ(a)+xγ , where a ∈ S, xγ ∈ X.
Therefore, an orthonormal basis for Hγ is given by the set of functions {eτ(a)+xγ | a ∈ S, xγ ∈ X} for
γ 	= 0 and {eτ(a) | a ∈ S} for γ = 0.
Given γ ∈ Γ, construct the unitary operator

Uγ : l
2(S) −→ Hγ

such that U0ea = eτ(a) if γ = 0 and Uγea = eτ(a)+xγ if γ 	= 0.
Using Lemma 3.1, represent each Tτ(a) as the direct sum

Tτ(a) =
⊕

γ∈Γ
T
γ
τ(a),

where T γ
τ(a) = Tτ(a)|Hγ stands for the restriction of Tτ(a) to Hγ .

Likewise, Vτ ∈ Monτ and Aτ ∈ P (τ(S)) are representable as the direct sums
Vτ =

⊕

γ∈Γ
V γ
τ , Aτ =

⊕

γ∈Γ
Aγτ , (13)

where V γ
τ = Vτ |Hγ and Aγτ = Aτ |Hγ are the corresponding restrictions to the subspace Hγ .

Fix γ ∈ Γ and show that the diagram
l2(S)

Ta ��

Uγ

��

l2(S)

Uγ

��
Hγ

T
γ
τ(a)

�� Hγ
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commutes; i.e.,
T
γ
τ(a)Uγ = UγTa. (14)

Indeed, for all c ∈ S and γ 	= 0,
T
γ
τ(a)Uγec = T

γ
τ(a)eτ(c)+xγ = eτ(a)+τ(c)+xγ = Uγea+c = UγTaec.

If γ = 0 then
T 0τ(a)U0ec = T

0
τ(a)eτ(c) = eτ(a)+τ(c) = U0ea+c = U0Taec.

Apply involution to (14). Then, for every γ ∈ Γ, we obtain
(T ∗τ(a))

γUγ = UγT
∗
a . (15)

It is not hard to see that operators of the form (7) and (9) satisfy the analogous equality

V γ
τ Uγ = UγV. (16)

To this end, it suffices to apply (14) and (15), which yields

V γ
τ Uγ =

(
T in
τ(an)

)γ(
T
in−1
τ(an−1)

)γ
. . .
(
T i1
τ(a1)

)γ
Uγ = UγT

in
anT

in−1
an−1 . . . T

i1
a1 = UγV.

Finally, using (16), we obtain a relation for operators of the form (8) and (10):

AγτUγ =
m∑

i=1

αi(Vi)
γ
τUγ =

m∑

i=1

αiUγVi = UγA. (17)

Extend ϕ acting at the generators as in (12) to operators V of the form (7) as follows:

ϕ(V ) = Vτ .

Prove the correctness of this extension; i.e., assuming that V1 = V2 on l
2(S) show that ϕ(V1) = ϕ(V2)

on l2(L).
Assume that V1ec = V2ec for every c ∈ S. Then (V1)τey = (V2)τey for every y ∈ L. Recall that,

by the definition of a normal extension with a generating set, each y ∈ L is uniquely representable as
y = τ(c) + xγ , where c ∈ S and xγ ∈ X. By (16) for every y ∈ L we obtain
(V1)τey = (V1)

γ
τ eτ(c)+xγ = (V1)

γ
τUγec = UγV1ec = UγV2ec = (V2)

γ
τUγec = (V2)

γ
τ eτ(c)+xγ = (V2)τey.

Thus, (V1)τ = (V2)τ , i.e., ϕ(V1) = ϕ(V2).
Now, extend ϕ to the finite linear combinations A of the form (8) as follows: ϕ(A) = Aτ . Using (17),

we similarly prove the correctness of this extension.
The so-constructed mapping ϕ is a unital ∗-homomorphism from P (S) into the C∗-algebra C∗r (L).
Equalities (13) and (17) imply that each operator Aτ is representable as the direct sum

Aτ =
⊕

γ∈Γ
UγAU

∗
γ .

Thus, ‖Aτ‖ = ‖A‖. Consequently, ϕ is an isometric ∗-homomorphism on the algebra P (S) dense
in C∗r (S). This means that ϕ can be extended uniquely to an isometric ∗-homomorphism on the whole
C∗-algebra C∗r (S). �
In conclusion, we give the example showing that if a normal extension (L, τ, σ) of a semigroup S

by some group Γ has no generating set; then the correspondence Ta �−→ Tτ(a) does not extend in general
to an injective ∗-homomorphism from C∗r (S) into C∗r (L). In other words, an embedding of C∗r (S) into
the C∗-algebra C∗r (L) generated by an isometric representation of S may fail to exist.
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Example 3.1. As the semigroup L, consider the set

L = Z2,3 
 {m+ 3/2 | m ∈ Z+}
with the usual addition. Consider the short exact sequence

0 −−−→ Z2,3
τ−−−→ L

σ−−−→ Z2 −−−→ 0,

in which the semigroup homomorphisms are defined as follows: τ(n) = n, σ(n) = [0]2, and σ
(
m+ 32

)
=

[1]2 for all n ∈ Z2,3 and m ∈ Z+. Obviously, σ−1([0]2) = Z2,3. Thus, the triple (L, τ, σ) is a normal
extension of Z2,3 by Z2.
Show that this extension has no generating set. Since Z2 is a finite group of order 2, any generating

set, if it exists, must consist of a single element. Obviously, this must be the least element of the set
{m+ 3/2 | m ∈ Z+}, i.e., 32 . But then 52 is not representable as n+ 32 , where n ∈ Z2,3.
Let us show that there is no ∗-homomorphism ϕ : C∗r (Z2,3) −→ C∗r (L) such that the diagram

Z2,3

π
Z2,3

��

τ �� L

πL
��

C∗r (Z2,3) ϕ
�� C∗r (L)

commutes, where πZ2,3(n) = Tn, πL(k) = Tk, n ∈ Z2,3, k ∈ L. Suppose that such a homomorphism ϕ
exists. Then we must have ϕ(Tn) = Tτ(n) for every n ∈ Z2,3.
Consider the following operators in C∗r (Z2,3):

P0 = I − T ∗3 T2T ∗2 T3, P3 = T3P0T
∗
3 , P0,3 = I − T2T ∗2 , Q = P0,3 − P3 − P0.

It is easy to notice that P0 is the projection to the one-dimensional subspace with basis {e0} in l2(Z2,3).
Also, P3 is a projection to the subspace with basis {e3} and P0,3 is the projection to the subspace with
basis {e0, e3}. Therefore, Q = 0.
Consider the operator ϕ(Q) = ϕ(P0,3)−ϕ(P3)−ϕ(P0) which is an element of C∗r (L). Recall that l2(L)

is representable as the direct sum
l2(L) = H0 ⊕H1,

where H0 has the basis {en}n∈Z2,3 and H1 has the basis {em+ 3
2
}m∈Z+ . Then ϕ(Q) is representable as

the direct sum
ϕ(Q) = ϕ(Q)|H0 ⊕ ϕ(Q)|H1 .

Likewise, the operators ϕ(P0), ϕ(P3), and ϕ(P0,3) are representable as direct sums. It is not hard to see
that

ϕ(P0)|H1 = 0, ϕ(P3)|H1 = 0
and ϕ(P0,3)|H1 is the projection to the subspace in H1 with basis {e 3

2
, e 5
2
}. Therefore, ϕ(Q)|H1 	= 0

though ϕ(Q)|H0 = 0. Thus, ϕ(Q) 	= 0; a contradiction.
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