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1 Introduction

The purpose of this paper is to demonstrate that the discrete Painlevé equations q-PVI [1]

play the role of string equation in “5d” conformal [2–6] matrix model (CMM), which

underlies [7–15] the theory of AGT-related [16–18] conformal blocks [19–23] and Nekrasov

functions [24–26]. As all matrix models [27–33], the CMM satisfies a set of Ward identities

(Virasoro constraints) [34–37], which, in this particular case, can be reduced to a small

moduli space of just a few α-couplings. Also, after a peculiar Fourier transform in the

matrix size N , it possesses a determinant representation [38] and therefore is a τ -function of

integrable hierarchy, i.e. satisfies discrete Hirota equations in Miwa variables. As usual, an

interesting point is the interplay between integrability and Virasoro constraints. The basic

difference is that integrability does not depend on the integration measure of matrix model

and, in this sense, is a pure classical property independent of quantization of the theory. At

the same time, the Ward identities strongly depend on the measure and remain independent

only of the choice of integration contour. This means that the Virasoro constraints are
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picking up a peculiar narrow class of τ -functions, they are naturally named “matrix-model

τ -functions”, and finding a nice way to describe this class is one of the central problems in

non-perturbative physics. Usually, when applied to τ -functions, the Virasoro constraints

reduce to just a single independent “string equation”, and, in this sense, the problem is to

understand what the string equations can be. This explains a significance of the claim [39]

that the Painlevé VI equation, whose solutions were associated with conformal blocks

in [40–43], can in fact be exactly the string equation for the CMM. A natural question is

why it is so complicated, why just the usual L−1 constraint is not the right answer? The

reason is that the Virasoro constraints include τ -functions at different (shifted) values of the

Miwa variables α, and the Painlevé equation emerges when one rewrites them in another

form, without such shifts. This is achieved by switching to some special combinations w1

and w2 of shifted τ , and these two w’s appear related by a pair of equations, equivalent to

the Painlevé VI equation (in the simplest case of the 4-point conformal block). The point

here is that the CMM actually has two sets of parameters: in addition to the α-couplings,

there are “background” points z, and the Painleveé equation is a differential equation with

respect to z (which is a double ratio of the four punctures: positions of vertex operators in

the conformal block). Moreover, it can be naturally split into an algebraic relation between

w1 and w2, which is just a Seiberg-Witten spectral curve, and a true differential equation,

which describes its z-dependence. Actually, all these properties look much simpler in the q-

deformed (“5d”) CMM, because there the two discreteness, the built-in one in the couplings

α and the q-related one in the background parameter z become nearly undistinguishable

(this property is sometimes called duality between the Coulomb and Higgs branches, which

gets transparent after the lift from 4d to 5d). Therefore, this letter will concentrate on the

q-deformed CMM and discrete Painlevé equations q-PVI (see [44] for a different relation

of q-Painlevé with matrix models, see also [45]).

We begin in section 2 from reminding the standard facts about usual matrix models

and the discrete Painlevé equations q-PVI. Then in section 3 we remind the basic facts

about Miwa variables in integrable systems and relation to CMM. As already mentioned,

the relation includes the Fourier transform of the naive CMM in N and leads to deter-

minant representation, which emerges after such a transform is performed. After this, in

section 4 we discuss the 5d CMM in detail and demonstrate that its partition function

solves in this case the discrete Painlevé q-PVI equations. At last, in section 5 we discuss

the 8-equation system of [46], the discrete Painlevé equations being derived from these 8

equations: actually exactly one half of these eight are Hirota equations, i.e. possess the

property of measure-independence. The other four equations are actually not Hirota ones,

since they depend on the concrete hypergeometric solution to the Toda chain hierarchy,

and therefore should be equivalent to the string equation. We devote a special section 5.3

to demonstrate what is the meaning of these 8 equations and how the Painlevé equation

arises from them in the simplest case of N = 1.

What we do not do in this paper, we do not actually derive the 8 equations of [46]

from CMM, we just confirm an observation that they are true. In fact, as it was already

mentioned, only four of them require a derivation, since the other four are just bilinear

Hirota equations that follow from the fact that the matrix model partition function is
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a τ -function of the Toda chain hierarchy. The derivation of remaining four equations is

completely analogous to the derivation of [46], and we do not repeat it here. We are also

rather brief on the story of Fourier transform and determinant representations just referring

to the original paper [38] for further details. Finally, we do not perform the reduction

from 5d to 4d, where the simply looking discrete Painlevé q-PVI equations turn into a

sophisticated differential Painlevé VI equation. All this is postponed to a big technical

version of the present text. The goal of this letter is just to make the very claims and make

them precise, well grounded and justified.

2 Matrix models and Painlevé equations

In this section, we briefly describe a set of standard facts about matrix models and Painlevé

equation necessary for the main body of the text.

2.1 Matrix models and string equations

The first issue is matrix models. We use the term “matrix models” for arbitrary eigenvalue

integrals with the Vandermonde-like factor in the measure, though their matrix integral

representations are not always that much simple. Matrix models possess a set of defining

properties [27–33, 47–50]:

• Ward identities. The partition function of matrix model satisfies an infinite set of

Ward identities.

• Solutions. The number of solutions to the Ward identities are parameterized by

the number of independent closed contours in the eigenvalue integral representation

of matrix model (when the solution is not unique, the model is said to be in the

Dijkgraaf-Vafa phase [51–53]).

• Integrability. The partition function of matrix model is related to a τ -function of

an integrable hierarchy: it is either the partition function or its Fourier transform (in

the Dijkgraaf-Vafa phase [38]) which is the τ -function.

• String equation. The concrete solution of the integrable hierarchy is fixed by the

string equation(s), which is typically the lowest Ward identity(ies). Moreover, the full

set of Ward identities is equivalent to the integrable hierarchy with only the string

equation added.

• Measure (in)dependence. The measure in the eigenvalue integral is essentially

the Vandermonde-like factor responsible for a universal “interaction” between the

eigenvalues times a product of additional measure functions for all eigenvalues. Inte-

grability properties do not depend on the choice of this measure function, only on the

Vandermonde. Only the string equation is fully sensitive to the choice of the mea-

sure, and this makes it so important to specify the partition function of a particular

matrix model within the relatively wide space of various τ -functions.

– 3 –
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2.1.1 Hermitian matrix model

We start with the most simple and typical example of the matrix model: the Gaussian

Hermitian matrix model. Ii is given by the following integral over N × N Hermitian

matrices

ZN{t} =
1

VolU(N)

∫

N×N

dM exp

(

−
η

2
TrM2 +

∑

k

tk TrM
k

)

(2.1)

where dM is the invariant measure on Hermitian N×N matrices and VolU(N) is the volume

of the unitary group U(N).

• This partition function satisfies an infinite set of Ward identities, which form (a Borel

subalgebra of) the Virasoro algebra:

L̂nZN{t} :=

(

−η
∂

∂tn+2
+
∑

ktk
∂

∂tk+n
+

n−1
∑

a=1

∂2

∂ta∂tn−a
+2N

∂

∂tn
+N2δn,0 +Nt1δn,−1

)

× ZN{t} = 0, n ≥ −1 (2.2)

• It can be reduced to the eigenvalue integral

ZN (tk) :=
1

N !

∫

∏

i

dxi∆
2(x) exp

(

−
∑

i

ηx2i +
∑

k,i

tkx
k
i

)

(2.3)

where ∆(x) is the Vandermonde determinant. This integral is considered as a formal

power series in time variables tk and, hence, is given just by moments of the Gaussian

integral. Therefore, there is only one integration contour, which is the real axis, and

only one solution to the Ward identities.

• Integral (2.3) can be rewritten as a determinant

ZN (tk) = det
i,j=1...N

Ci+j−2, Ck :=

∫

R

dxxk exp
(

− ηx2 +
∑

m

tmxm
)

(2.4)

This determinant is nothing but a τ -function of integrable Toda chain hierarchy.

• One can consider instead of (2.3) a more general eigenvalue integral

ZN (tk) :=
1

N !

∫

∏

i

dxiµ(xi)∆
2(x) exp

(

∑

k,i

tkx
k
i

)

(2.5)

with an arbitrary measure function µ(x), then, in (2.4), Ck=
∫

R
dxµ(x)xk exp

(

− ηx2

+
∑

m tmxm
)

. This more general integral is still a τ -function of integrable Toda

chain hierarchy. The concrete solution (2.3) is unambiguously picked up by the

string equation additional to the integrable hierarchy

L̂−1ZN{t} =

(

−η
∂

∂t1
+
∑

ktk
∂

∂tk−1

)

ZN{t} = 0 (2.6)
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2.1.2 Kontsevich model

Another example is a matrix model that depends on the external matrix, Kontsevich model:

ZK =

∫

DX exp
(

−1
3TrX

3 − TrAX2
)

∫

DX exp (−TrAX2)
(2.7)

which is a function of time-variables

t2k+1 :=
1

2k + 1
TrA−2k−1 −

2

3
δk,3 (2.8)

• The Kontsevich integral satisfies an infinite set of Virasoro constraints:

L̂nZK =

(

∑

k>0

(

k +
1

2

)

t2k+1
∂

∂t2k+1+2n
+
1

4

∑

a+b=n−1

∂2

∂t2a+1∂t2b+1
+

δn,0
16

+
δn,−1t

2
1

4

)

ZK

= 0 (2.9)

• The Kontsevich integral is understood as a formal power series in variables tk, which

fixes just a unique solution to the Virasoro constrains [54].

• ZK is a τ -function of the KdV hierarchy [55, 56], which is reduction from the KP

τ -function, which depends only on the odd time variables t2k+1.

• The concrete solution to the KdV hierarchy is again unambiguously picked up by the

first Virasoro constraint L̂−1, which is the string equation:

L̂−1ZK =

(

∑

k>0

(

k +
1

2

)

t2k+1
∂

∂t2k−1
+

t21
4

)

ZK = 0 (2.10)

One can now leave only two non-zero time variables t1 and t3 and differentiate (2.10)

w.r.t. t1 in order to get an equation for u := ∂2 logZk

∂t2
1

3t3u+ t1 = 0 (2.11)

Similarly, choosing non-zero t1 and t5, one obtains the equation (with t5 chosen a

proper constant) [57]

1

3

∂2u

∂t21
− u2 + t1 = 0 (2.12)

which is the Panlevé I equation, etc. This is the first example where we obtain the

Painlevé equation as a corollary of a reduction of the string equation to few (two)

non-zero times.
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2.2 Discrete Painlevé equation

As we already noted, the case of discrete Painlevé q-PVI equations turns out to be much

simpler than the case of standard Painlevé VI equation. It is an equation for two functions

w1(z) and w2(z), and has the form [1] (in fact, there are many other discrete Painlevé

equations, see [58, 59] for a review)

w1(z)w1(qz)

a3a4
=

(w2(qz)− b1z)(w2(qz)− b2z)

(w2(qz)− b3)(w2(qz)− b4)

w2(z)w2(qz)

b3b4
=

(w1(z)− a1z)(w1(z)− a2z)

(w1(z)− a3)(w1(z)− a4)
(2.13)

where the constants ai, bi satisfy the constraint

b1b2
b3b4

= q
a1a2
a3a4

(2.14)

By rescalings w1(z), w2(z) and z, one can always remove three of these constants ai, bi so

that remaining four constants we can always parameterize with four parameters.

Note that the continuous limit of these discrete Painlevé q-PVI equations to the

Painlevé VI equation is quite tricky: one expands the equation nearby the point

ai = bi = q = 1 (2.15)

so that

w1 =
w2 − z

w2 − 1
, w2 =

w1 − z

w1 − 1
, i.e.

(w1 − a1z)(w1 − a2z)

(w1 − z)(w1 − 1)

1

qw2
= 1 (2.16)

Now choosing

q = 1− ǫ, ai = 1+ ǫai, bi = 1+ ǫbi, y1 = w1,
(w1 − a1z)(w1 − a2z)

(w1 − z)(w1 − 1)

1

qw2
= 1− ǫw1y2

(2.17)

with ǫ → 0, one arrives at a pair of first order differential equations for y1, y2 that are

equivalent to the Painlevé VI equation [1].

This is quite a surprise that such a fancy limit may naturally emerge, however, it turns

out to be the case: it naturally emerges as the 4d limit of the 5d matrix model, which is

nothing but the matrix integral with 3 arbitrary non-vanishing Miwa variables, or just a

matrix model with a 3-logarithm potential (see section 3.2).

3 Matrix models in Miwa variables

3.1 Miwa variables and Hirota bilinear identities

Now let us consider the change of variables tk in the integral (2.5) with an arbitrary measure

function µ(x) to the so called Miwa variables (za, 2αa)

tk :=
1

k

∑

a

2αaz
−k
a (3.1)

– 6 –
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with arbitrary many parameters za and αa. Then, the integral becomes

ZN (za;αa) :=
1

N !

∫

∏

i

dxiµ(xi)∆
2(x)

∏

i,a

(

1−
xi
za

)2αa

(3.2)

As soon as (2.5) is a τ -function of the Toda chain hierarchy [60, 61], it satisfies the Hirota

bilinear identities, which, in the Miwa variables, look like [55, 56, 62–64]

(za − zb) · ZN (αc + 1/2) · ZN (αa + 1/2, αb + 1/2)+

+(zb − zc) · ZN (αa + 1/2) · ZN (αb + 1/2, αc + 1/2)+

+(zc − za) · ZN (αb + 1/2) · ZN (αa + 1/2, αc + 1/2) = 0 (3.3)

and are satisfied for all triples of za,b,c and αa,b,c. It can be also derived from the determinant

representations.

Similarly, for all pairs of za,b and αa,b, there is another equation [65]

(za − zb) · ZN · ZN−1(αa + 1/2, αb + 1/2)− za · ZN (αa + 1/2) · ZN−1(αb + 1/2)+

+zb · ZN (αb + 1/2) · ZN−1(αa + 1/2) = 0

(3.4)

and

zb · ZN · ZN−1(αa + 1/2, αb + 1/2)− ZN (αa + 1/2) · ZN−1(αb + 1/2)−

−zb · ZN (αb + 1/2) · ZN−1(αa + 1/2) = 0 (3.5)

if za = 0. In fact, it follows from (3.3), since changing multiplicity by one unit α →

α+1/2 is equivalent to inserting a fermion in the fermionic realization of the Toda hierar-

chy [63, 64, 66], and such is increasing the discrete Toda time N by one: ZN → ZN+1 as

well. Similar identities that involve three multiplicities are

zb · ZN (αc−1/2) · ZN−1(αa+1/2, αb+1/2)− ZN (αa+1/2, αc−1/2) · ZN−1(αb+1/2)−

−zb · ZN (αb + 1/2, αc − 1/2) · ZN−1(αa + 1/2) = 0

(3.6)

zc · ZN−1 · ZN (αa−1/2, αb−1/2, αc−1/2)− ZN−1(αa−1/2) · ZN (αb−1/2, αc−1/2)−

−zc · ZN−1(αc − 1/2) · ZN (αa − 1/2, αb − 1/2) = 0

(3.7)

if za = 0. There is also a bilinear difference equation that relates ZN+1 and ZN−1 [65], but

we do not need it here.

3.2 Conformal matrix models and Painlevé VI equation

Now let us note that the integrals of the form (3.2) naturally emerge in studying the

Virasoro conformal blocks within the conformal matrix model approach [2–15]. Indeed, the

CMM-representation of the standard Virasoro conformal block of the theory with central

– 7 –
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charge c = 1 with conformal dimensions parameterized by conformal momenta, ∆i = α2
i is

given by the formula

B(4d)(αi;α; z) = z∆−∆1−∆2 ·

(

1 +
(∆2 −∆1 +∆)(∆3 −∆4 +∆)

2∆
· z +O(z2)

)

= Z(4d) · Z
(4d)
N1,N2

(3.8)

with the eigenvalue (matrix) model integral

Z
(4d)
N1,N2

= z2α1α2(1− z)2α2α3 ·
1

N1!N2!

∫

∏

i

dxi∆
2(x)

∏

x2α1

i (z − xi)
2α2(1− xi)

2α3 (3.9)

where Z is a normalization factor, and the matrix integral (3.9) depends on two integers, N1

and N2 that count the number of integrations over the contours C1 = [0, z] and C2 = [1,∞)

respectively. These integers are determined by the external conformal momenta αi and the

internal one, α:

N1 = α− α1 − α2, N2 = −α− α3 − α4 (3.10)

This is a typical Dijkgraaf-Vafa type model with two different contours, its partition func-

tion is not a τ -function of an integrable hierarchy. In order to have a τ -function, one can

consider a model with the same measure and with the unique integration contour given by

a formal sum of two contours C(µ1, µ2) := µ1 · C1 + µ2 · C2, where µ1 and µ2 are formal

parameters:

Z
(4d)
N (µ1, µ2) :=

1

N !

∫

C(µ1,µ2)

∏

i

dxi∆
2(x)

∏

x2α1

i (z − xi)
2α2(1− xi)

2α3 (3.11)

Then, we immediately have

Z
(4d)
N (µ1, µ2) =

∑

N1,N2: N1+N2=N

µN1

1 µN2

2 · Z
(4d)
N1,N2

(3.12)

i.e. Z
(4d)
N (µ1, µ2) is a generation function of the Dijkgraaf-Vafa partition functions Z

(4d)
N1,N2

.

This is nothing but a discrete Fourier transform in the variable µ1/µ2 with the sum N =

N1 +N2 fixed.

Z
(4d)
N (µ1, µ2) is already a τ -function of the Toda chain in Miwa variables (3.2) restricted

to the point with only three non-zero Miwa variables. As any matrix model τ -function,

the multiple integral (3.11) has the standard determinant representation (2.4)

Z
(4d)
N (µ1, µ2) = z2α1α2(1− z)2α2α3 · det

1≤i,j≤N
G(i+ j − 2) (3.13)

where

G(k) = µ1

∫ z

0
x2α1+k(z − x)2α2(1− x)2α3dx+ µ2

∫ ∞

1
x2α1+k(z − x)2α2(1− x)2α3dx (3.14)

and it was demonstrated in [39] that it satisfies the Painlevé VI equation.

Thus, it is the set-up where the continuous limit of the discrete Painlevé equa-

tions (2.13) naturally emerges. In the remaining part of the paper we demonstrate that

the same scheme is equally well applicable to the q-Painlevé case of 5d conformal matrix

models. Moreover, the structures behind the Painlevé equation in this discrete q-case are

much more transparent than in the 4d model.

– 8 –
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4 5d matrix model and discrete Painlevé equations

4.1 CMM representation of the q-Virasoro conformal block

In the q-Virasoro case, the procedure is literally the same: at the first step, we realize the

conformal block by the matrix integral [67–69]. There are only two differences with the

Virasoro case: first, all integrals become the Jackson integrals, and, second, some powers

are replaced with the Pochhammer symbols. The Jackson integral is defined as a sum

∫ 1

0
f(x)dqx = (1− q)

∞
∑

k=0

f(qk) (4.1)

One can transform eigenvalue integrals over the contours C1 = [0, z] and C2 = [1,∞) into

the integrals over C = [0, 1] with the changes of variables: x → zu and x → 1/v respectively.

These integrals can be immediately deformed to the Jackson integrals in form (4.1). One

has also to substitute the degrees α2 and α3 in (3.9) with the q-Pochhammer symbols:1

(1− ξ)p → (ξ; q)p =

p−1
∏

k=0

(1− qkξ) (4.2)

After making these two changes, we immediately arrive to the CMM representation of the

q-Virasoro conformal block of the theory with central charge c = 1 (see [70] for c 6= 1 case),

the counterpart of (3.9), [67]:

B(5d)(∆i; ∆; z) = Z(5d) · Z
(5d)
N1,N2

(4.3)

with2

Z
(5d)
N1,N2

= z2α1α2(z; q)2α2α3
·

1

N1!N2!

∫ N1
∏

i=1

(

z2α1+2α2+N1dquiu
2α1

i (ui; q)2α2
(zui; q)2α3

)

∆2(u)×

×

∫ N2
∏

j=1

(

dqvjv
−2α1−2α2−2α3−2N1−2
j (zvj ; q)2α2

(vj ; q)2α3

)

∆2(v)×
N1
∏

i=1

N2
∏

j=1

(

1− zuivj

)2

(4.4)

where the numbers of integration N1 and N2 are given by the same formula (3.10).

1This is the case for the integer values of p, the extension to non-integer is immediate:

(ξ; q)p → exp

(

−

∞
∑

k=1

1− qpk

1− qk
ξk

k

)

.

2Note that in the literature, the prefactor (z; q)2α2α3
is often omitted (see, e.g., [68], eqs. (4.29)–(4.30)).

This factor is due to the additional U(1) group that participates in the AGT conjecture, and would be

necessary if one requires that the q-Virasoro conformal block turns into the Virasoro one when q → 1. It

is also present in the solution to the continuous Painlevé equation in its standard form, but solution to the

discrete Painlevé equations is invariant w.r.t. multiplying the solution by this factor, see below.
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The function Z
(5d)
N1,N2

is related to the 5d Nekrasov functions Zλ,µ via

Z
(5d)
N1,N2

=
(

Z(5d)
)−1

· z∆−∆1−∆2 ·
∑

λ,µ

(

q2α3+1z
)|λ|+|µ|

Zλ,µ (4.5)

4.2 The Fourier transform of the conformal block

Now we again introduce a generating function of Z
(5d)
N1,N2

, which is the Fourier transform of

the q-Virasoro conformal block,

Z
(5d)
N (µ1, µ2) =

∑

N1,N2: N1+N2=N

µN1

1 µN2

2 · Z
(5d)
N1,N2

(4.6)

Similarly to Z
(4d)
N (µ1, µ2), this function is a Toda chain τ -function (in Miwa variables) and

has a determinant representation

Z
(5d)
N (µ1, µ2) = z2α1α2(z; q)2α2α3

· det
1≤i,j≤N

G(i+ j − 2) (4.7)

where

G(k) = µ1z
2α12+k+1

∫

dquu
2α1+k(u; q)2α2

(zu; q)2α3
+

+µ2

∫

dqvv
−2α1−2α2−2α3−2−k(zv; q)2α2

(v; q)2α3
=

= µ1 · z
2α12+k+1 ·Bq(2α1 + k + 1, 2α2 + 1) 2φ1(q

−2α3 , q2α1+k+1; q2α12+k+2; q, z) +

+µ2 · q
−(2α1+1)(2α23+1) ·Bq(−2α123 − k − 1, 2α3 + 1)×

× 2φ1(q
−2α123−k−1, q−2α2 ; q−2α12−k; q, z) (4.8)

where we denote α12 = α1 + α2 etc, and Bq(α, β) =
∫ 1
0 dqxx

α−1(x; q)
β−1

=
Γq(α)Γq(β)
Γq(α+β) is

the q-Beta-function constructed from the q-Γ-functions [71], while 2φ1(a, b; c; q, z) is the

Heine basic q-hypergeometric function [71],

2φ1(a, b; c; q, z) :=
∞
∑

n=0

(a; q)n(b; q)n
(c; q)n(q; q)n

zn (4.9)

The determinant representation, similarly to Z
(4d)
N (µ1, µ2), follows from the eigenvalue

representation

Z
(5d)
N (µ1, µ2) ∼

1

N !

∫ N
∏

i=1

(

dqxix
2α1

i (z−1xi; q)2α2
(xi; q)2α3

)

∆2(x) (4.10)

4.3 Conformal block as a discrete Painlevé solution

We define now the function3 τ(α1, α2, α3, α4; z) = τN (αi;µ1/µ2, z) =

µN
2 Z

(5d)
N (µ1, µ2)z

−2α1α2(z; q)−1
2α2α3

, for simplicity of notation removing the simple factor

3Note the notation here differs from that in [72], where the correspondence between the q-conformal

block and the discrete Painlevé VI equations was established for a non-matrix model case, when (3.10) has

not to be satisfied.
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z2α1α2(z; q)2α2α3
(as we noted above, see footnote 2, multiplying the τ -function with the

factor (z; q)2α2α3
does not change the solution to the Painlevé equation) and using that

N = −α1 − α2 − α3 − α4. Then, we have, in fact, eight different τ -functions that are used

for constructing the discrete Painlevé equations:

τ1 (α1, α2, α3, α4; z) = τ

(

α1 +
1

2
, α2, α3 +

1

2
, α4; z

)

τ2 (α1, α2, α3, α4; z) = τ

(

α1, α2 −
1

2
, α3, α4 +

1

2
; z

)

τ3 (α1, α2, α3, α4; z) = τ

(

α1, α2, α3 +
1

2
, α4 +

1

2
; z

)

τ4 (α1, α2, α3, α4; z) = τ

(

α1 +
1

2
, α2 −

1

2
, α3, α4; z

)

τ5 (α1, α2, α3, α4; z) = τ

(

α1 +
1

2
, α2, α3, α4 +

1

2
; z

)

τ6 (α1, α2, α3, α4; z) = τ

(

α1, α2 −
1

2
, α3 +

1

2
, α4; z

)

τ7 (α1, α2, α3, α4; z) = τ

(

α1 +
1

2
, α2 −

1

2
, α3 +

1

2
, α4 +

1

2
; z

)

τ8 (α1, α2, α3, α4; z) = τ (α1, α2, α3, α4; z) (4.11)

Indeed, one can construct the functions wi(z) through these 8 different τ -functions in

accordance with the weight lattice of D
(1)
5 [46, 72, 73] (in fact, due to bilinear relations [72],

they can be expressed through 4 τ -functions):

w1(z) = qNz ·
τ1(qz)τ2(z)

τ3(qz)τ4(z)

w2(z) = q2α3+2N−1z ·
τ5(z)τ6(z)

τ7(z)τ8(z)
(4.12)

and these functions w1(z) and w2(z) satisfy the discrete Painlevé q-PVI equations (2.13)

with

−N=
∑

i

αi, a1 = q, a2 = q1−N−2α3 , a3 = q2−N , a4 = q2α2+1 (4.13)

b1 = q−2α2+1, b2 = q2α1+2α3+N+1, b3 = q2α3+1, b4 = q2α1+2α3+N+1

The first constraint in this list allows us to omit α4 from the set of the arguments of

τ -functions (4.11). As we noted earlier, one can always express ai, bi through any four

independent parameters, four αi in this case. A determinant solution to the q-Painlevé

equation was also obtained in [46]. After some manipulations with the q-hypergeometric

functions, it can be reduced to solution (4.7) at µ2 = 0.
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5 Discrete Painlevé: integrability in Miwa variables + string equations

5.1 Conformal matrix model and Hirota bilinear identities

One can check that these τ -functions satisfy the eight bilinear relations [46, 72]:

zq2N−2τ1τ2 − q2α2τ3τ4 − τ7τ8 = 0 (5.1)

τ1τ2 − q1−2α3−2Nτ3τ4 − τ5τ6 = 0 (5.2)

τ1τ2 − q1−Nτ3τ4 − q2N−2α12−2τ5τ6 = 0 (5.3)

zqN−1τ1τ2 − q2α2τ3τ4 − τ7τ8 = 0 (5.4)

zτ1τ2 − q2−2Nτ3τ4 − q−2α2τ7τ8 = 0 (5.5)

τ1τ2 − q1−2N−2α3τ3τ4 − τ5τ6 = 0 (5.6)

τ1τ2 − q1−Nτ3τ4 − q2N−2−2α12τ5τ6 = 0 (5.7)

zτ1τ2 − q2−Nτ3τ4 − qN−2α2τ7τ8 = 0 (5.8)

where we introduced the standard notation τ := τ(qz), τ := τ(q−1z). From these identities,

one can derive the discrete Painlevé q-PVI equations [46].

These bilinear identities can be derived in many various ways, important for us is

that the first four of these bilinear identities can be obtained from the matrix model

representation (4.10) exploiting the fact that this latter is a τ -function of the Toda chain

hierarchy [60, 61]. Indeed, note that the multiple integral (4.10) can be also presented in

the form (2.5), with integral substituted by the Jackson integral (which is inessential for

integrable properties and, hence for the Hirota identities) and three sets of Miwa variables

(0, 2α1), (zq−i, 1), i = 0, . . . , 2α2 − 1, (q−i, 1), i = 0, . . . , 2α3 − 1 (5.9)

for integer 2α2 and 2α3. At the same time, this eigenvalue integral (4.10) is not only a τ -

function of the Toda chain, it is simultaneously a τ -function of the discrete Toda chain [74].

As a τ -function, the integral (4.10) also satisfies the Hirota identities (3.3)–(3.7). For

instance, choosing (za, αa) = (0, α1), (zb, αb) = (q−2α3+1, 1) and (zc, αc) = (q−2α2+1, 1)

and using (4.11), one obtains from (3.6) the bilinear identity (5.2). Similarly, choosing

(za, αa) = (0, α1), (zb, αb) = (q−2α3 , 1) and (zc, αc) = (q−2α2+2, 1), one obtains from (3.6)

the bilinear identity (5.1). In order to obtain these formulas, one has to take into account

a normalization factor that gives rise to additional factors like q2N in the coefficients of the

bilinear identities.

Similarly, one can note that the rescaling τ(α3) → τ(α3 + 1/2) corresponds to adding

the Miwa variable with unit multiplicity at the point qz. Considering this as zb with

(za, αa) = (0, α1) and (zc, αc) = (q−2α2+1, 1) and using (4.11), one immediately ob-

tains (5.3) from (3.6). At last, one can obtain, in a similar way, (5.4).

5.2 Discrete Painlevé equation and the string equation

Note that the four integrable Hirota identities are not enough to fix a solution to the

discrete Painlevé equations, the integral (4.10), because they are satisfied by integrals with
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an arbitrary measure µ(x). To put it differently, they encode just an integrable hierarchy,

which has a lot of different solutions, and (4.10) is only one of them. In order to fix this

concrete solution, one needs additional constraints, and these constraints are the Virasoro

constraints considered at the point with only 3 non-zero Miwa variables. This is because

the Ward identities (Virasoro constraints) crucially depend on the chosen measure function

µ(x). The Ward identities typically fix the solution up to a choice of integration contours.

In the present case with the matrix model (4.10), there are, at least, two solutions, which are

the two q-hypergeometric functions in (4.8). In the non-discrete case, there is an argument

that the Ward identities leave no room for more solutions: the partition function (3.11)

is associated, as usual for the Dijkgraaf-Vafa solution, with two possible extrema (minima

with a proper choice of parameters) of the matrix (eigenvalue) model potential: it is a sum

of three logarithms that exactly has two extrema.

Thus, the four Virasoro constraints play the role of the string equation: the string

equation added to integrability leads to the discrete Painlevé q-PVI equations. This is

much similar to the way the usual Painlevé equation emerges from the string equation

of the matrix models [27–33] (e.g. the Painlevé I equation for the Kontsevich model, see

section 2.1.2 and eq. (2.12)).

5.3 An illustration: N = 1 case

In order to illustrate the phenomenon, we consider the simplest case of N = 1 “matrix

model” (3.2) with µ(x) = 1, i.e. the matrix of size 1 × 1 and just one integration [75]. In

this case,

b1
b3

= q
a2
a4

= q−2α23 ,
b2
b4

=
a1
a3

= 1 (5.10)

as follows from (4.13). With these special values of parameters (5.10), the discrete Painlevé

q-PVI equations (2.13) admits solutions that satisfy a simpler pair of equations

w1(z) = a4
w2(z)− b1z/q

w2(z)− b3
, w2(qz) = b4

w1(z)− a1z

w1(z)− a3
(5.11)

Indeed, from the second equation it follows that

w1(z) =
a3w2(qz)− b4a1z

w2(qz)− b4

(5.10)
= a3

w2(qz)− b2
w2(qz)− b4

(5.12)

Multiplying it with the first equation taken at z → qz, one obtains the first equation

from (2.13). Similarly, it follows from the first equation that

w2(z) =
b3w1(z)− b1za4/q

w1(z)− a4

(5.10)
= b3

w1(z)− a2
w1(z)− a4

(5.13)

Multiplying it with the second equation, we obtain the second equation from (2.13).
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In this case, the bilinear identities become linear and (5.4) follows from (5.1), (5.6)

from (5.2), (5.7) from (5.3) and (5.8) from (5.5) so that the independent four identities are

zτ2 −
q

b1
τ4 − τ8 = 0 (5.14)

τ2 −
1

b3
τ4 − τ6 = 0 (5.15)

τ2 − τ4 −
qb1
a2b2

τ6 = 0 (5.16)

zτ2 − τ4 −
b1
q
τ8 = 0 (5.17)

Now expressing τ6 and τ8 from (5.14) and (5.15) and substituting them into (4.12), we

obtain that the first equation of (5.11) is, indeed, correct. Similarly, expressing τ6 and τ8
from (5.16) and (5.17), we prove the second equation of (5.11).

Of these four identities, only the last one (5.17) is not a corollary of integrability and is

correct only for the specific µ(x) = 1 measure. Hence, it should be just the string equation.

Let us analyze it in detail.

Note that, at N = 1, the first string equation in Miwa variables reads

∑

a

2αaZ1(za;αa − 1/2) = 0 (5.18)

where the sum goes over all Miwa variables. In the case of a restricted number of Miwa

variables (5.9), when (3.2) reduces to (4.10) at N = 1, this equation turns into

L̂−1τ=0 =⇒ [2α1]q · τ(α1−1/2)− [2α2]q · τ(α2−1/2)− q2α1−2α3 [2α3]q · τ(α3 − 1/2) = 0

(5.19)

Here [n]q := (1 − qn)/(1 − q) denotes the quantum numbers. However, this lowest L−1

constraint does not contain z and is not just the same as (5.17). Fortunately, there are more

equations, those associated with L̂1 and L̂2 Virasoro constraints (all other Borel Virasoro

generators are obtained by repeated commutation of L̂2 and L̂±1), and they involve z. Thus

we can try (and succeed) to get (5.17) by adding these constraints to (5.19). In fact, L̂2 is

needed when one deals with an arbitrary number of Miwa variables. In the N = 1 case and

the number of Miwa variables restricted to the set (5.9), one can substitute it by a much

simpler L̂0. In this case, the two independent constraints in addition to L̂−1 are [75]:4

L̂0τ = 0 =⇒ [−2α1]q(q − q−2α3z) · τ(α1 − 1/2) + q2α2 [2α2]q(q − z)τ(α2 − 1/2, z/q)−

−[−2α3](q · q
2α2 − q−2α3z)τ(α3 − 1/2) = 0

L̂1τ = 0 =⇒ τ + q2α2 · τ(α1 + 1/2, α2 − 1/2)− z · τ(α2 − 1/2) = 0

(5.20)

4Note that the definitions in that paper are slightly different, thus the formulas are slightly different

as well.
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In fact, the second equation is a combination of L̂1-constraint and the lower ones, and

is nothing but equation (5.14). Now, one can obtain from the first two Virasoro con-

straints that







[2α1]q(q − 1)τ(α1 − 1/2) = q−2α3−1(q2α23+1 − z)τ(α2 − 1/2)− q2α12−1(q − z)τ(α2 − 1/2)

=⇒

[2α3]q(q − 1)τ(α3 − 1/2) = q−2α1−1(q2α3+1 − z)τ(α2 − 1/2)− q2α23−1(q − z)τ(α2 − 1/2)

(5.21)

Replacing in the first of these equations α1 → α1+1/2 and, in the second, α3 → α3+1/2,

one finally obtains from the first two Virasoro constraints the identities

(

a2b2
q

− 1

)

τ8 =

(

q

b1
− a2z

)

τ4 −
a2b2
b1

(1− z)τ4 (5.22)

(b3 − 1)τ8 =
q2

a2b2
(b3 − z)τ6 −

q2

b1a2
(1− z)τ6 (5.23)

and the second of these identities is exactly (5.17) provided one applies (5.15) and (5.16)

to express τ6 and τ6 through τ2 and τ4.

6 Conclusion

In this letter, we made and justified the following set of statements:

• The Fourier transform of the q-conformal block has a manifest determinant represen-

tation when is presented by the conformal matrix model.

• This determinant solves the discrete Painlevé q-PVI equations.

• This discrete Painlevé solution follows from a combination of integrability and string

equations of the matrix model in Miwa variables restricted to a particular set of Miwa

variables.

For the sake of illustration, we considered the N = 1 case in a very detail. More technical

issues are postponed to an expanded version of this text.

The main message of this paper is that the string equations can be significantly less

naive than just the lowest Virasoro constraints. Moreover, it calls for a deeper under-

standing of the structure and the shape of Ward identities in logarithmic models and in

Miwa variables, which are getting more and more important in modern theory. If the first

emergency of the simplest equations from the Painléve family in the double scaling limit of

Hermitian model [76–78] was long considered to be just an accident, our work demonstrates

that things are very different: the Painléve equations seem to appear naturally within this

context, and, if so, one needs to understand what has the Painléve property to do with

the Virasoro constraints. This adds to the long-standing puzzle of the Painléve property

of reductions of integrable systems to ODE [79, 80]. Last, but not the least, we once again
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confirmed the relative simplicity of the q-Painléve equations as compared to the contin-

uous ones, and this emphasizes the importance of clearly defining the Painleve property

of finite-difference equations and of clearly describing the limiting procedure connecting it

to the continuous case. As we explained, this involves study of the condensation of Miwa

variables and the related problem of various phase transitions in the space of τ -functions.

Hopefully the identity

Painléve = string

in the space of difference/differential equations looks impressive and challenging enough to

give a new momentum for work in all these directions.
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equations, J. Math. Phys. 24 (1983) 522.

– 20 –

https://doi.org/10.1016/j.nuclphysb.2011.09.021
https://arxiv.org/abs/1105.0948
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0948
https://doi.org/10.1088/1751-8113/49/34/345201
https://arxiv.org/abs/1602.01209
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.01209
https://doi.org/10.1007/JHEP03(2017)098
https://arxiv.org/abs/1511.03471
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.03471
https://doi.org/10.1007/JHEP02(2018)077
https://arxiv.org/abs/1711.02063
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02063
https://arxiv.org/abs/1706.01940
https://doi.org/10.1007/s00220-005-1461-z
https://doi.org/10.1007/BF01017328
https://arxiv.org/abs/hep-th/9312213
https://inspirehep.net/search?p=find+EPRINT+hep-th/9312213
https://doi.org/10.1016/j.physletb.2018.08.046
https://arxiv.org/abs/1708.07479
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.07479
https://doi.org/10.1016/0370-2693(90)90818-Q
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B236,144%22
https://doi.org/10.1016/0550-3213(90)90522-F
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B335,635%22
https://doi.org/10.1103/PhysRevLett.64.127
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,64,127%22
https://doi.org/10.1063/1.525721

	Introduction
	Matrix models and Painlevé equations
	Matrix models and string equations
	Hermitian matrix model
	Kontsevich model

	Discrete Painlevé equation

	Matrix models in Miwa variables
	Miwa variables and Hirota bilinear identities
	Conformal matrix models and Painlevé VI equation

	5d matrix model and discrete Painlevé equations
	CMM representation of the q-Virasoro conformal block
	The Fourier transform of the conformal block
	Conformal block as a discrete Painlevé solution

	Discrete Painlevé: integrability in Miwa variables + string equations
	Conformal matrix model and Hirota bilinear identities
	Discrete Painlevé equation and the string equation
	An illustration: N=1 case

	Conclusion 

